User’s Guide

Version 6.20
March 31st 2002

by
Joseph C. Giarratano, Ph.D.

CLIPS User’s Guide

Table of Contents

Chapter 1 Justthe Facts ... 1
[0 [1o i o] o [F PRI 1
The Beginning and the ENdoooiiiiiiii e 2
MEKING @ LISt oeeeriieeeeie e 2
ANd ChecKiNg [t TWICE. .. ceeeeeiei et e e 3
Clearing Up the FACESveeiii e 5
Sensitive Fields and SIUMPING........oouuiuiiiii e 6
A MEEr Of STYIE ...t 13
Getting SPaced QULuiei e 14
Retract that Fact..........coooi e 16
Watch that FaCtooomiii e 18
WIth @ LItHE HEIP .ot 19
Chapter 2 Following the RUleSccouiniiiiiiiiic e 21
Making GOOA RUIEScoiiiiiiiiii e e e e e ee et e e e e e eeeees 21
Let's Get QUACKINGoiiiieeiiiie ettt e e e ettt e e e e e e ee et bt e e e e e aeeae 24
KICK YOUE DUCK ...ttt e e e e e e et e e e enn e eees 25
Show Me the RUIES.......ooiiiiii e e 27
WIE 10 M. e 28
L@ 11 =T == U= 29
Chapter 3 Adding Details.......c.cocviiiiiii e 31
3 (o] o 172 oo [L TSP PPPRR 31
TaKE @ WK ... et a e 32
A QUESHION Of STrAIEGY ..vvvii e e 32
GIMME DeffactS......ccciiiieiiii e 33
Selective EMINatioN...........oiii i 35
LT = L (o T 35
F N € ToTo T 1V =1] o L PP 36
Other FEATUIESuiiieiiii et e et e e e et e e et e e e eaaaeeeennns 37
Chapter 4 Variable Interests.........ccveiiiiiiiiiiiiciire s e 41
Let's Gt Variableoiiiii e 41
B ASSEITIVE .. e e 42
What the DUCK Saidoieiiiii e 43
The Happy BacChEloroouiiii e e e e e e 44
[1's NOt IMPOraNt ... e 45
L€ To]TaTo TR 1o [PPSR PPPTR 47
The Ideal BaCh@lOr....... oo 49
THE LUCKY DUCK. ... et ettt et e e e e ea e 51
Chapter 5 Doing It Up In Style......ccviiiiiiiicrrcrcrrrre e 53
YT o] aTo [=T o U | TP P PSPPI 53

AIN'TNO SEHNGS ON ... e 58
LT F= LT = T N F= 0 = 59
Chapter 6 Being Functionalcccoiuiiiiiiiiiie e 63
NOt My CONSEFAINT. ... et e e e e ee et e e e e e eeeaes 63
BE CaULIOUS.ttt e e e e et a e e aae 64
AN AWAY WE GO ...ttt ettt ettt e e e e e e e e e b e e e e e e e ereaaaas 65
[1'S ElOMENTAIY ... i e 66
EXTENSIVE AFQUIMENTS .. coeiii et e e e e ea e 67
=T I =TT U €N 68
[ToT0 g To I = 7= Vo o =1 (o] = S 69
DoiNg YOUr OWN THINGceeiiiiiii ettt e e e e ee et e e e e e aeeees 71
Other FEATUIESviiiiiii et e e e et e e e et e e e e aaa e e eeanas 72
Chapter 7 How to Be in Control.........cccooiiiiiiiiiiiiic e e 75
Let's Start REAINGccciiieiiiiii et 75
Being EffiCIENT ... oo e 77
L@ 11 =T == U= 78
Chapter 8 Matters of Inheritance............ccooiiiiiiiiiii e 83
HOW 10 D& ODJECHVE. ... e e eeees 83
THE Class StUTT.....ccieeii e e e e e et e e e aa s 84
HOW the UPPIES Gt TheIIS.....u ittt e et eeeaa e e 86
The lllegitimate YUKKIE oo 91
SROW M.t 93
L@ 11 =T == U= 99
Chapter 9 Meaningful MeSSagesccoviiiiiiiiiiiiririrrcnn e 101
The Birds and the BEES.........oiiuiiii e 101
DOIKY DUCK ...ttt e e et e e et e e et n e e eeaa e aees 103
Much Ado ADOUL INSTANCES......... it 106
The Disappearing DUCK. ccouu et 107
What Did You Have For Breakfast ... 108
Class ElQUETEuieei e 111
Other FEAUIESuu i e e e e e et e e et e e e e aaeeeeneas 113
Chapter 10 Fascinating Facets...........ccccoiiiiiiiiiiiiiii e 115
A Slot Named Defaull...........viiiiiiiee e 115
Cardinal Properti€sc..uuuuii it 118
Oher FEAUES ... it e et e e e e 119
Chapter 11 Handling Handlers...........cccooiiiiiiiiiiiiiii s re e e 121
Your Primitive Self ..o 121
Make 'Em Pay Through the NOSE............uuiiiiiiiii e 125
LG LY 11 oo I (o TU o o SRR PPPRR 126
Primary ConSiderationS.........ccuuuuuuiiiiiie ittt 127
The POWeEr Of BEIET......ui i e e 129
The Truthful DAeMIONeeiiieee e 131
Gt the POINT ... 134
TrEASUIE IMAPS ...ttt ettt e et e e et e 140

(O] (=Y g L1 1 [(=T IR 145

Chapter 12 Questions and ANSWEIScccioieiiiiiiririririririrrre s sasas 147
1@ o)1= Yo =TT S 147
ODbjects IN the Databaseooieiiuiiiii e 148
Pl TAKE ANY .. ettt e e 150
DeSIgN DECISIONS ... ettt et e et e 151
Oher FEAIUMESttt e e e e e e e e e e e eeenaaaas 154

Support INformationccvoviiiiriiic e 155

— v —

Readme

The first step on the road to wisdom is the admission of ignorance. The

second step is realizing that you don't have to blab it to the world.

This section was formerly called the Preface, but since nobody read it, | renamed it to a
more conventional title that computers users are conditioned to obey. Another
suggestion was to call this the Don't Readme section, but since people today believe
everything they read, | was afraid they really wouldn't read it.

The purpose of a Preface, oops, excuse me, a Readme, is to provide
metaknowledge about the knowledge contained in a book. The term metaknowledge
means knowledge about the knowledge. So this description of the Readme is actually
metametaknowledge. If you're either confused or intrigued at this point, go ahead and
read this book anyway because | need all the readers | can get.

What Is CLIPS?

CLIPS is an expert system tool developed by the Software Technology Branch (STB),
NASA/Lyndon B. Johnson Space Center. Since its first release in 1986, CLIPS has
undergone continual refinement and improvement. It is now used by thousands of
people around the world. The Internet news group comp.ai.shells often has discussions
of CLIPS.
CLIPS is designed to facilitate the development of software to model human
knowledge or expertise.
There are three ways to represent knowledge in CLIPS:
® Rules, which are primarily intended for heuristic knowledge based on
experience.
@& Deffunctions and generic functions, which are primarily intended for procedural
knowledge.

— Vi —

@& Object-oriented programming, also primarily intended for procedural
knowledge. The five generally accepted features of object-oriented
programming are supported: classes, message-handlers, abstraction,
encapsulation, inheritance, polymorphism. Rules may pattern match on objects
and facts.

You can develop software using only rules, only objects, or a mixture of objects and
rules.

CLIPS has also been designed for full integration with other languages such as C and
Ada. In fact, CLIPS is an acronym for C Language Integrated Production System. Rules
and objects form an integrated system too since rules can pattern-match on facts and
objects. In addition to being used as a stand-alone tool, CLIPS can be called from a
procedural language, perform its function, and then return control back to the calling
program. Likewise, procedural code can be defined as external functions and called
from CLIPS. When the external code completes execution, control returns to CLIPS.

If you are already familiar with object-oriented programming in other languages such
as C++, Smalltalk, Object C, or Turbo Pascal, you know the advantages of objects in
developing software. If you are not familiar with object-oriented programming, you will
find that CLIPS is an excellent tool for learning this new concept in software
development.

What This Book is About

The CLIPS User's Guide is an introductory tutorial on the basic features of CLIPS. It is
not intended to be a comprehensive discussion of the entire tool. The companion
volume to this book is the CLIPS Reference Manual., which does provide a complete,
comprehensive discussion of all the topics in this book and much more.

Who Should Read This Book

The purpose of the CLIPS User's Guide is to provide an easy to read, elementary
introduction to expert systems for people with little or no experience with expert
systems.

The CLIPS User's Guide can be used in the classroom or for self-teaching. The only
prerequisite is that you have a basic knowledge of programming in a high-level
language such as Pascal, Ada, FORTRAN, C (OK, BASIC if nothing else, but we won't

— Vil —
admit it in public and will disavow this statement if asked.)

How To Use This Book

The CLIPS User's Guide is designed for people who want a quick introduction to expert
system programming in a hands-on manner. The examples are of a very general
nature. Also, since learning a new language can be a frustrating experience, the writing
is in a light, humorous style (I hope) compared to serious-minded, massive, and
intimidating college textbooks. Hopefully, the humor will not offend anyone with a sense
of humor.

For maximum benefit, you should type in the example programs in the text as you
read through the book. By typing in the examples, you will see how the programs should
work and what error messages occur if you make a mistake. The output for the
examples is shown or described after each example. Finally, you should read the
corresponding material in the CLIPS Reference Manual as you cover each chapter in
the CLIPS User's Guide..

Like any other programming language, you will only learn programming in CLIPS by
writing programs in it. To really learn expert system programming, you should pick a
problem of interest and write it in CLIPS.

Acknowledgments

| greatly appreciate the advice and reviews of this book by many people. Thanks to
Gary Riley, Chris Culbert, Brian Donnell, Bryan Dulock, Steven Lewis, Ann Baker, Steve
Mueller, Stephen Baudendistel, Yen Huynh, Ted Leibfried, Robert Allen, Jim Wescott,
Marsha Renals, Pratibha Boloor, Terry Feagin, and Jack Aldridge. Special thanks to
Bob Savely for supporting the development of CLIPS.

Chapter 1 Just the Facts

If you ignore the facts, you'll never worry about being wrong

This chapter introduces the basic concepts of an expert system. You'll see how to insert
and remove facts in CLIPS. If you are using a Macintosh or the Windows version of
CLIPS for the IBM PC (or compatible), you can select most commands by the mouse
instead of typing them in. The arrow keys on the keyboard will also move the cursor and
allow selection of menu items.

Introduction

CLIPS is a type of computer language designed for writing applications called expert
systems. An expert system is a program which is specifically intended to model human
expertise or knowledge. In contrast, common programs such as payroll programs, word
processors, spreadsheets, computer games, and so forth, are not intended to embody
human expertise or knowledge. (One definition of an expert is someone more than 50
miles from home and carrying a briefcase.)

CLIPS is called an expert system tool because it is a complete environment for
developing expert systems which includes features such as an integrated editor and a
debugging tool. The word shell is reserved for that portion of CLIPS which performs
inferences or reasoning. The CLIPS shell provides the basic elements of an expert
system:

1. fact-list, and instance-list: Global memory for data

2. knowledge-base: Contains all the rules, the rule-base

3. inference engine: Controls overall execution of rules

A program written in CLIPS may consist of rules, facts, and objects. The inference
engine decides which rules should be executed and when. A rulebased expert system
written in CLIPS is a data-driven program where the facts, and objects if desired, are
the data that stimulate execution via the inference engine.

—2_

This is one example of how CLIPS differs from procedural languages such as Pascal,
Ada, BASIC, FORTRAN, and C. In procedural languages, execution can proceed
without data. That is, the statements are sufficient in those languages to cause
execution. For example, a statement such as PRINT 2 + 2 could be immediately
executed in BASIC. This is a complete statement that does not require any additional
data to cause its execution. However, in CLIPS, data are required to cause the
execution of rules.

Originally, CLIPS had capabilities to represent only rules and facts. However, the
enhancements of Version 6.0 allow rules to match objects as well as facts. Also, objects
may be used without rules by sending messages and so the inference engine is no
longer necessary if you use only objects. In chapters 1 through 7, we'll discuss the facts
and rules of CLIPS. The object features of CLIPS are covered in chapters 8 through 12.

The Beginning and the End

To begin CLIPS, just enter the appropriate run command for your system. You should
see the CLIPS prompt appear as follows:

CLIPS>

At this point, you can start entering commands directly into CLIPS. The mode in which
you are entering direct commands is called the top-level. If you have a window version
of CLIPS, you can just select the command using the mouse or arrow keys rather than
typing it in. Please refer to the CLIPS Reference Manual for a discussion of the
commands supported under windows. For simplicity and uniformity in this book, we'll
assume the commands are typed in.

The normal mode of leaving CLIPS is with the exit command. Just type

(exit)

in response to the CLIPS prompt and then press the carriage return key.

Making a List

As with other programming languages, CLIPS recognizes certain keywords. For
example, if you want to put data in the fact-list, you can use the assert command.

—3—

As an example of assert, enter the following right after the CLIPS prompt as shown:

CLIPS> (assert (duck))

Here the assert command takes (duck) as its argument. Be sure to always press the
carriage return key to send the line to CLIPS.
You will see the response

<Fact-0>

which indicates CLIPS has stored the duck fact in the fact-list and given it the identifier
0. The angle-brackets are used as a delimiter in CLIPS to surround the name of an
item. CLIPS will automatically name facts using a sequentially increasing number and
list the highest fact-index when one or more facts is asserted.

Notice that the (assert) command and its (duck) argument are surrounded by
parentheses. Like many other expert system languages, CLIPS has a LISP-like syntax
which uses parentheses as delimiters. Although CLIPS is not written in LISP, the style
of LISP has influenced the development of CLIPS.

And Checking It Twice

Suppose you want to see what's in the fact-list. If your version of CLIPS supports
windows, you may just select the appropriate command from the menu. Alternatively,
you can enter commands from the keyboard. In the following, we'll describe the
keyboard commands since the window selections are self-explanatory.

The keyboard command to see facts is with the facts command. Enter (facts) in
response to the CLIPS prompt and CLIPS will respond with a list of facts in the fact-list.
Be sure to put parentheses around the command or CLIPS will not accept it. The result
of the (facts) command in this example should be

CLIPS> (facts)

f-0 (duck)

For a total of 1 fact.
CLIPS>

The term f-Ois the fact identifier assigned to the fact by CLIPS. Every fact inserted
into the fact-list is assigned a unique fact identifier starting with the letter "f" and
followed by an integer called the fact-index. On starting up CLIPS, and after certain

— 4 —

commands such as clear and reset (to be discussed in more detail later), the fact-
index will be set to zero, and then incremented by one as each new fact is asserted.
The (reset) command will also insert a fact (initial-fact) as f-0. This fact is often used for
convenience to initially activate rules. Shown following is what happens when a (reset)
is done first.

CLIPS> (reset)
CLIPS> (facts)
-0 (initial-fact)
For a total of 1 fact.
CLIPS> (assert (duck))

<Fact-1>
CLIPS> (facts)
f-0 (initial-fact)

f-1 (duck)
For a total of 2 facts.
CLIPS>

Notice that the fact-index is <Fact-1> after the duck fact is asserted because there are
now two facts in working memory and the duck has index 1.

What happens if you try to put a second duck into the fact-list? Let's try it and see.
Assert a new (duck), then issue a (facts) command as follows

CLIPS> (assert (duck))

FALSE
CLIPS> (facts)
-0 (initial-fact)

f-1 (duck)
For a total of 2 facts.
CLIPS>

The FALSE message is returned by CLIPS to indicate that it was not possible to
perform this command. You'll see just the original "f-1 (duck)". This shows that CLIPS
will not accept a duplicate entry of a fact. However, there is an override command,
setfact-duplication, which will allow duplicate fact entry.

Of course you can put in other, different facts. For example, assert a (quack) fact and
then issue a (facts) command. You'll see

CLIPS> (assert (quack))
<Fact-2>

CLIPS> (facts)

f-0 (initial-fact)
f-1 (duck)

f-2 (quack)

For a total of 3 facts.
CLIPS>

Notice that the (quack) fact is now in the fact-list.

Facts may be removed or retracted. When a fact is retracted, the other facts do not
have their indices changed, and so there may be "missing" fact-indices. As an analogy,
when a football player leaves a team and is not replaced, the jersey numbers of the
other players are not all adjusted because of the missing number (unless they really
hate the guy's guts and want to forget he ever played for them.)

Clearing Up the Facts

The clear command removes all facts from memory, as shown by the following.

CLIPS> (facts)

-0 (initial-fact)
f-1 (duck)

f-2 (quack)

For a total of 3 facts.
CLIPS> (clear)

CLIPS>

and all facts in the fact-list will be removed.

The (clear) command essentially restores CLIPS to its original startup state. It clears
the memory of CLIPS and resets the fact-identifier to zero. To see this, assert (animal-is
duck), then check the fact-list. Notice that (animal-is duck) has a fact-identifier of f-O
because the (clear) command reset the fact identifiers. The (clear) command actually
does more than just remove facts. Besides removing all the facts, (clear) also removes
all the rules, as you'll see in the next chapter.

The following example shows how three facts are asserted, and the (facts) command
is used. The (clear) command is used to get rid of all facts in memory and reset the fact-
indices to start with f-O.

CLIPS> (clear)

CLIPS> (assert (a) (b) (c))

<Fact-2>
CLIPS> (facts)
f-0 (a)
f-1 (b)
f-2 (o

For a total of 3 facts.
CLIPS> (facts @)

-0 (a)
f-1 (b)
f-2 (o

For a total of 3 facts.
CLIPS> (facts 1)

f-1 (b)

f-2 (o

For a total of 2 facts.
CLIPS> (facts 2)

f-2 (o)

For a total of 1 fact.
CLIPS> (facts 0 1)

-0 (a)

f-1 (b)

For a total of 2 facts.
CLIPS> (facts @ 2 2)

-0 (a)

f-1 (b)

For a total of 2 facts.
CLIPS>

Notice only one (assert) is used to assert the three facts, (a), (b), and (c). The highest
fact-index is 2 and this is returned by CLIPS in the informational message <Fact2>.
The much longer alternative would be to assert one fact per command (This may be
done by people who like to show off their typing speed.)

Sensitive Fields and Slurping

A fact such as (duck) or (quack) is said to consist of a single field. A field is a
placeholder (hamed or unnamed) that may have a value associated with it. As a simple
analogy, you can think of a field as a picture frame. The frame can hold a picture,
perhaps a picture of your pet duck (For those of you who are curious what a picture of a

—7—

"quack" looks like, it could be (1) a photo of an oscilloscope trace of a duck saying
"quack", where the signal input comes from a microphone, or (2) for those of you who
are more scientifically inclined, a Fast Fourier Transform of the "quack" signal, or (3) a
TV-huckster selling a miracle cure for wrinkles, losing weight, etc.). Named placeholders
are only used with deftemplates, described in more detail in chapter 5.

The (duck) fact has a single, unnamed placeholder for the value duck. This is an
example of a single-field fact. A field is a placeholer for a value. As an analogy to
fields, think of dishes (fields) for holding food (values).

The order of unnamed fields is significant. For example, if a fact was defined

(Brian duck)
and interpreted by a rule as the hunter Brian shot a duck, then the fact
(duck Brian)

would mean that the hunter duck shot a Brian. In contrast, the order of named fields is
not significant, as you'll see later with deftemplate.

Actually, it is good software engineering to start the fact with a relation that describes
the fields. A better fact would be

(hunter-game duck Brian)

to imply that the first field is the hunter and the second field is the game.

A few definitions are now necessary. A list is a group of items with no implied order.
Saying that a list is ordered means that the position in the list is significant. A
multifield is a sequence of fields, each of which may have a value. The examples of
(duck Brian) and (Brianlduck) are multifield facts. If a field has no value, the special
symbol nil, which means "nothing" may be used for an empty field as a placeholder. For
example,

(duck nil)
would mean that the killer duck bagged no trophies today.

Note that the nilis necessary to indicate a placeholder, even if it has no value. For
example, think of a field as analogous to a mailbox. There's a big difference between an

—8—

empty mailbox, and no mailbox at all. Without the nil, the fact becomes a single-field
fact (duck). If a rule depends on two fields, it will not work with only one field, as you'll
see later.

There are a number of different types of fields available: float, integer, symbol,
string, external-address, fact-address, instance-name and instance-address The
type of each field is determined by the type of value stored in the field. In an unnamed
field, the type is determined implicitly by what type you put in the field. In deftemplates,
you can explicitlty declare the type of value that a field can contain. The use of explicit
types enforces the concepts of software engineering, which is a discipline of
programming to produce quality software.

A symbol is one type of field that starts with a printable ASCII character and is
followed optionally by zero or more printable characters. Fields are commonly delimited
or bounded, by one or more spaces or parentheses. For example,

(duck-shot Brian Gary Rey)

has four fields to indicate all the hunters shot by the killer duck. In this fact, the fields are
delimited by spaces, and the opening and closing parentheses.

Facts are not allowed to be embedded within other facts. For example, the following
is an illegal ordered fact.

(duck (shot Brian Gary Rey))

However, this could be a legal deftemplate fact if "shot" is defined as the name of a
field, while "Brian Gary Rey" are the values associated with the named field.
CLIPS is case-sensitive. Also, certain characters have special meaning to CLIPS.

"C) &I <~ 7%

The "&", "I", and "~" may not be used as stand-alone symbols or as any part of a
symbol.
Some characters act as delimiters by ending a symbol. The following characters act
as delimiters for symbols.
& any non-printable ASCII character, including spaces, carriage returns, tabs, and
linefeeds
@& double quotes, "
®& opening and closing parentheses, ()

& ampersand, &

& vertical bar, |

& less than, <. Note that this may be the first character of a symbol

& tilde, ~

& semicolon, ; indicates start of a comment, a carriage return ends it

& ? and $? may not begin a symbol but may be inside it

The semicolon acts as the start of a comment in CLIPS. If you try to assert a

semicolon, CLIPS will think you're entering a comment and wait for you to finish. If you
accidentally enter a semicolon in top-level, just type in a closing parenthesis and
carriage return. CLIPS will respond with an error message and the CLIPS prompt will
reappear (This is one of the few approved occasions in life in which it's necessary to do
something wrong to get something right.)

As you read through this manual, you will learn the special meanings of the
characters above. With the exception of the "&", "I", and "~", you may use the others as
described. However, it may be confusing to someone reading your program and trying
to understand what the program is doing. In general, it's best to avoid using these
characters in symbols unless you have some good reason for using them.

The following are examples of symbols.

duck

duckl

duck_soup
duck-soup
duckl-1_soup-soup
d! 7#%A

The second type of field is the string. A string must begin and end with double
quotes. The double quotes are part of the field. Zero or more characters of any kind can
appear between the double quotes. Some examples of strings follow.

"duck"

"duckl"

"duck/soup"”

"duck soup"

"duck soup is good!!!"

The third and fourth types of field are numeric fields. A field which represents a

—10 —

number which can be either an integer or floating-point type field. A floating-point type
is commonly referred to simply as a float.

All numbers in CLIPS are treated as long integers or double-precision floats.
Numbers without a decimal point are treated as integers unless they are outside integer
range. The range is machine dependent on the number of bits, N, used to represent the
integer as follows.

- 2N-1 2N-1-1
For 32-bit long integers, this corresponds to a range of numbers

- 2,147,483,0648 ... 2,147,483,0647

As some examples of numbers, assert the following data where the last number is in
exponential notation, and uses the "e" or "E" for the power-of-ten.

CLIPS> (clear)
CLIPS> (facts)
CLIPS> (assert (number 1))

<Fact-0>

CLIPS> (assert (x 1.5))

<Fact-1>

CLIPS> (assert (y -1))

<Fact-2>

CLIPS> (assert (z 65))

<Fact-3>

CLIPS> (assert (distance 3.5e5))
<Fact-4>

CLIPS> (assert (coordinates 1 2 3))
<Fact-5>

CLIPS> (assert (coordinates 1 3 2))
<Fact-6>

CLIPS> (facts)

f-0 (nhumber 1)

(x 1.5)

(y -1

(z 65)

(distance 350000.0)
(coordinates 1 2 3)
(coordinates 1 3 2)
or a total of 7 facts.

Ul h WN B

.F
.F
.F
.F
.F
.F
F

—11 =
CLIPS>

As you can see, CLIPS prints the number entered in exponential notation as 350000.0
because it converts from power-of-ten format to floating-point if the number is small
enough.

Notice that each number must start with a symbol such as "number", "x", "y", etc.
Before CLIPS version 6.0, it was possible to enter only a number as a fact. However,
now a symbol is required as the first field. Also, certain reserved words used by CLIPS
cannot be used as the first field, but may be used as others. For example, the names of
predefined CLIPS functions (see Appendix | of the CLIPS Reference Manual), def-
constructs, and so forth cannot be used.

A fact consists of one or more fields enclosed in matching left and right parentheses.
For simplicity we'll only discusss facts in the first seven chapters, but most of the
discussion of pattern matching applies to objects as well. Exceptions are certain
functions such as assert and retract which only apply to facts, not objects. The
corresponding ways to handle objects are discussed in chapters 8—12.

A fact may be ordered or unordered. All the examples you've seen so far are
ordered facts because the order of fields makes a difference. For example, notice that
CLIPS considers these as separate facts although the same values "1", "2", and "3" are
used in each.

5 (coordinates 1 2 3)
6 (coordinates 1 3 2)

f-
f-

Ordered facts must use field position to define data. As an example, the ordered fact
(duck Brian) has two fields and so does (Brian duck). However, these are considered as
two separate facts by CLIPS because the order of field values is different. In contrast,
the fact (duck-Brian) has only one field because of the "-" concatenating the two values.

Deftemplate facts, described in more detail later, are unordered because they use
named fields to define data. This is analogous to the use of records in Pascal and other
languages.

Multiple fields normally are separated by white space consisting of one or more
spaces, tabs, carriage returns, or linefeeds. For example, enter the following examples
as shown and you'll see that each stored fact is the same.

CLIPS> (clear)
CLIPS> (assert (The duck says "Quack."))

—12 —

<Fact-0>
CLIPS> (facts)
f-0 (The duck says "Quack.™)

For a total of 1 fact.
CLIPS> (clear)

CLIPS> (assert (The duck says "Quack.")
<Fact-0>

CLIPS> (facts)

f-0 (The duck says "Quack.™)

For a total of 1 fact.

CLIPS>

Carriage returns may also be used to improve readability. In the following example, a
carriage return is typed after every field and the asserted fact is the same as before
when the fact was entered on one line.

CLIPS> (clear)
CLIPS> (assert (The

duck

says

"Quack"))

<Fact-0>

CLIPS> (facts)

f-0 (The duck says "Quack™)
For a total of 1 fact.

CLIPS>

However, be careful if you insert a carriage return inside of a string, as the following
example shows.

CLIPS> (assert (The

duck

says

"Quack

"))

<Fact-1>

CLIPS> (facts)

f-0 (The duck says "Quack™)
f-1 (The duck says "Quack

)
For a total of 2 facts.

— 13 —

CLIPS>

As you can see, the carriage return embedded in the double quotes was output with
the string to put the closing double quote on the next line. This is important because
CLIPS considers fact f-0 as distinct from fact f-1.

Notice also that CLIPS preserved the uppercase and lowercase letters in the fields of
the fact. That is, the "T" of "The" and the "Q" of "Quack" are uppercase. CLIPS is said to
be case-sensitive because it distinguishes between uppercase and lowercase letters.
For example, assert the facts (duck) and (Duck) and then issue a (facts) command.
You'll see that CLIPS allows you to assert (duck) and (Duck) as different facts because
CLIPS is case-sensitive.

The following example is a more realistic case in which carriage returns are used to
improve the readability of a list. To see this, assert the following fact where carriage
returns and spaces are used to put fields at appropriate places on different lines.
Dashes or minus signs are used intentionally to create single fields, so CLIPS will treat
items like "fudge sauce" as a single field.

CLIPS> (clear)
CLIPS> (assert (grocery-list

ice-cream
cookies
candy
fudge-sauce))
<Fact-0>
CLIPS> (facts)
f-0 (grocery-1list ice-cream cookies candy fudge-sauce)
For a total of 1 fact.
CLIPS>

As you can see, CLIPS replaced the carriage returns and tabs with single spaces.
While the use of white space in separating the facts is convenient for a person reading a
program, they are converted to single spaces by CLIPS.

A Matter of Style

It is good rule-based programming style to use the first field of a fact to describe the
relationship of the following fields. When used this way, the first field is called a relation.
The remaining fields of the fact are used for specific values. An example is (grocery-list

— 14 —

ice-cream cookies candy fudge-sauce). The dashes are used to make multiple words fit
in a single field.

Good documentation is even more important in an expert system than in languages
such as Pascal, C, Ada, etc., because the rules of an expert system are not generally
executed in a sequential manner. CLIPS aids the programmer in writing descriptive
facts like this by means of deftemplates.

Another example of related facts is (duck), (horse), and (cow). It's better style to refer
to them as

(animal-is duck)
(animal-is horse)
(animal-is cow)

or as the single fact
(animals duck horse cow)

since the relation animal-is or animals describes their relation and so provides some
documentation to the person reading the code.

The explicit relations, animal-is and animals, make more sense to a person than the
implicit meaning of (duck), (horse), and (cow). While this example is simple enough that
anyone can figure out the implicit relations, it is an easy trap to fall into to write facts in
which the relationship is not so obvious (In fact, it's much easier to make something
more complicated than easy, since people are more impressed by complexity than
simplicity.)

Getting Spaced Out

Since spaces are used to separate multiple fields, it follows that spaces cannot simply
be included in facts. For example,

CLIPS> (clear)
CLIPS> (assert (animal-is walrus))

<Fact-0>
CLIPS> (assert (animal-is walrus))
FALSE

CLIPS> (assert (animal-is walrus))
FALSE

— 15—

CLIPS> (facts)

f-0 (animal-is walrus)
For a total of 1 fact.
CLIPS>

Only one fact, (animal-is walrus), is asserted since CLIPS ignores white space and
considers all these facts equivalent. Thus, CLIPS responds with a FALSE when you try
to enter the last two duplicate facts. CLIPS normally does not allow duplicate facts to be
entered unless you change the set-fact-duplicate setting.

If you want to include spaces in a fact, you must use double quotes. For example,

CLIPS> (clear)
CLIPS> (assert (animal-is "duck™))

<Fact-0>

CLIPS> (assert (animal-is "duck "))
<Fact-1>

CLIPS> (assert (animal-is " duck™))
<Fact-2>

CLIPS> (assert (animal-is " duck "))
<Fact-3>

CLIPS> (facts)

-0 (animal-is "duck™)

f-1 (animal-is "duck ™)

f-2 (animal-is " duck™)

f-3 (animal-is " duck ™)
For a total of 4 facts.
CLIPS>

Note that the spaces make each of these facts different to CLIPS although the meaning
is the same to a person.

What if you want to include the double quotes in a field? The correct way to put
double quotes in a fact is with the backslash, "\", as the following example shows.

CLIPS> (clear)
CLIPS> (assert (single-quote "duck"))

<Fact-0>

CLIPS> (assert (double-quote "\"duck\""))
<Fact-1>

CLIPS> (facts)

-0 (single-quote "duck")

f-1 (double-quote ""duck"")

— 16 —

For a total of 2 facts.
CLIPS>

Retract that Fact

Now that you know how to put facts into the fact-list, it's time to learn how to remove
them. Removing facts from the fact-list is called retraction and is done with the retract
command. To retract a fact, you must specify the fact index of the fact as the argument
of retract. For example, set up your fact-list as follows.

CLIPS> (clear)
CLIPS> (assert (animal-is duck))

<Fact-0>

CLIPS> (assert (animal-sound quack))
<Fact-1>

CLIPS> (assert (The duck says "Quack."))
<Fact-2>

CLIPS> (facts)

-0 (animal-is duck)

f-1 (animal-sound quack)

f-2 (The duck says "Quack.™)

For a total of 3 facts.

CLIPS>

To remove the last fact with index -2, enter the retract command and then check your
facts as follows.

CLIPS> (retract 2)
CLIPS> (facts)
f-0 (animal-is duck)

f-1 (animal-sound quack)
For a total of 2 facts.
CLIPS>

What happens if you try to retract a fact that's already retracted, or a non-existent
fact? Let's try it and see.

CLIPS> (retract 2)
[PRNTUTIL1] Unable to find fact f-2.

—17 —

CLIPS>

Notice that CLIPS issues an error message if you try to retract a non-existent fact. The
moral of this is that you can't take back what you haven't given.
Now let's retract the other facts as follows.

CLIPS> (retract 1)
CLIPS> (facts)

f-0 (animal-is duck)
For a total of 1 fact.
CLIPS> (retract 0)
CLIPS> (facts)

CLIPS>

To retract a fact, you must specify the fact-index.
You can also retract multiple facts at once, as shown by the following.

CLIPS> (clear)
CLIPS> (assert (animal-is duck))

<Fact-0>

CLIPS> (assert (animal-sound quack))
<Fact-1>

CLIPS> (assert (The duck says "Quack."))
<Fact-2>

CLIPS> (retract 0 2)
CLIPS> (facts)

f-1 (animal-sound quack)
For a total of 1 fact.
CLIPS>

To retract multiple facts, just list the fact-id numbers in the (retract) command.
You can just use (retract *) to retract all the facts, where the "*" indicates all .

CLIPS> (clear)
CLIPS> (assert (animal-is duck))

<Fact-0>

CLIPS> (assert (animal-sound quack))
<Fact-1>

CLIPS> (assert (The duck says "Quack."))
<Fact-2>

CLIPS> (facts)

— 18 —

-0 (animal-is duck)
f-1 (animal-sound quack)
f-2 (The duck says "Quack.™)

For a total of 3 facts.
CLIPS> (retract *)
CLIPS> (facts)

CLIPS>

Watch that Fact

CLIPS provides several commands to help you debug programs. One command allows
you to continuously watch facts being asserted and retracted. This is more convenient
than having to type in a (facts) command over and over again and trying to figure out
what's changed in the fact-list.

To start watching facts, enter the command (watch facts) as shown in the following
example.

CLIPS> (clear)

CLIPS> (watch facts)

CLIPS> (assert (animal-is duck))
==> f-0 (animal-is duck)
<Fact-0>

CLIPS>

The right double arrow symbol, ==>, means that a fact is entering memory while the
left double arrow indicates a fact is leaving memory, as shown following.

CLIPS> (reset)

<== f-0 (animal-is duck)
==> f-0 (initial-fact)
CLIPS> (assert (animal-is duck))
==> f-1 (animal-is duck)
<Fact-1>

CLIPS> (retract 1)

<== f-1 (animal-is duck)
CLIPS> (facts)

f-0 (initial-fact)

For a total of 1 fact.
CLIPS>

— 19 —

The (watch facts) command provides a record that shows the dynamic or changing
state of the fact-list. In contrast, the (facts) command show the static state of the
factdist since it displays the current contents of the fact-list. To turn off watching facts,
enter (unwatch facts).

There are a number of things you can watch. These include the following, which are
described in more detail in the CLIPS Reference Manual. The comment in CLIPS
begins with a semicolon. Everything after the semicolon is ignored by CLIPS.

(watch facts)

(watch instances) ; used with objects
(watch slots) ; used with objects
(watch rules)

(watch activations)

(watch messages) ; used with objects
(watch message-handlers) ; used with objects
(watch generic-functions)

(watch methods) ; used with objects
(watch deffunctions)

(watch compilations) ; on by default
(watch statistics)

(watch globals)

(watch focus)

(watch all) ; watch everything

As you use more of the capabilities of CLIPS, you'll find these (watch) commands
very helpful in debugging. To turn off a (watch) command, enter an unwatch command.
For example, to turn off watching compilations, enter (unwatch compilations).

With a Little Help

CLIPS has on-line help available. To access the help feature, just enter (help)

and press the carriage return key. In a short while, you'll see a menu of topics. For more
information on using (help), read the help section on HELP_USAGE. To exit from help,
keep pressing the carriage return key until the CLIPS prompt reappears. If an error

message appears that says CLIPS could not find the help file, clips.hlp, you can find out
where CLIPS expected it to be by using the command (help-path).

—21 —

Chapter 2 Following the Rules

If you want to get anywhere in life, don't break the rules

— make the rules!

In the previous chapter, you learned about facts. Now you'll see how the rules of an
expert system utilize facts in making a program execute.

Making Good Rules

To accomplish useful work, an expert system must have rules as well as facts. Since
you've seen how facts are asserted and retracted, it's time to see how rules work. A rule
is similar to an IF THEN statement in a procedural language like Ada, C, or Pascal. An
IF THEN rule can be expressed in a mixture of natural language and computer
language as follows:

IF certain conditions are true
THEN execute the following actions

Another term for the above statement is pseudocode, which literally means false
code. While pseudocode cannot be directly executed by the computer, it serves as a
very useful guide to writing executable code. Pseudocode is also helpful in documenting
rules. A translation of rules from natural language to CLIPS is not very difficult if you
keep this IF THEN analogy in mind. As your experience with CLIPS grows, you'll find
that writing rules in CLIPS becomes easy. You can either type rules directly into CLIPS
or load rules in from a file of rules created by a text editor.

The pseudocode for a rule about duck sounds might be

IF the animal is a duck
THEN the sound made 1is quack

— 22 _

The following is a fact, and a rule named duck which is the pseudocode above
expressed in CLIPS syntax. The name of the rule follows immediately after the keyword
defrule. Although you can enter a rule on a single line, it's customary to put different
parts on separate lines to aid readability and editing.

CLIPS> (clear)

CLIPS> (unwatch facts)

CLIPS> (assert (animal-is duck))
<Fact-0>

CLIPS> (defrule duck
(animal-is duck)
=>
(assert (sound-is quack)))
CLIPS>

If you type in the rule correctly as shown, you should see the CLIPS prompt reappear.
Otherwise, you'll see an error message. If you get an error message, it is likely that you
misspelled a keyword or left out a parenthesis. Remember, the number of left and right
parentheses always must match in a statement.

The same rule is shown following with comments added to match the parts of the
rule. Also shown is the optional rule-header comment in quotes, "Here comes the
quack". There can be only one rule-header comment and it must be placed after the rule
name and before the first pattern. Although we're only discussing pattern matching
against facts now, more generally a pattern can be matched against a pattern entity. A
pattern entity is either a fact or an instance of a user-defined class. Pattern matching on
objects will be discussed later.

CLIPS tries to match the pattern of the rule against a pattern entity. Of course, white
space consisting of spaces, tabs, and carriage returns may be used to separate the
elements of a rule to improve readability. Other comments begin with a semicolon and
continue until the carriage return key is pressed to terminate a line. Comments are
ignored by CLIPS.

(defrule duck "Here comes the quack" ; Rule header
(animal-is duck) ; Pattern

=> ; THEN arrow
(assert (sound-is quack))) ; Action

& Only one rule name can exist at one time in CLIPS.

— 23—

Entering the same rule name, in this case "duck", will replace any existing rule with
that name. That is, while there can be many rules in CLIPS, there can be only one rule
which is named "duck". This is analogous to other programming languages in which
only one procedure name can be used to uniquely identify a procedure.

The general syntax of a rule is shown following.

(defrule rule_name "optional_comment"
(pattern_1) ; Left-Hand Side (LHS)
(pattern_2) ; of the rule consisting of elements
; before the "=>"

(pattern_N)

=>
(action_1) ; Right-Hand Side (RHS)
(action_2) ; of the rule consisting of elements
; after the "=>"
(action_M)) ; the last ")" balances the opening

; "(" to the left of "defrule". Be
; sure all your parentheses balance
; or you will get error messages

The entire rule must be surrounded by parentheses. Each of the rule patterns and
actions must be surrounded by parentheses. An action is actually a function which
typically has no return value, but performs some useful action, such as an (assert) or
(retract). For example, an action might be (assert (duck)). Here the function name is
"assert" and its argument is "duck". Notice that we don't want any return value such as a
number. Instead, we want the fact (duck) to be asserted. A function in CLIPS is a piece
of executable code identified by a specific name, which returns a useful value or
performs a useful side-effect, such as (printout).

A rule often has multiple patterns and actions. The number of patterns and actions do
not have to be equal, which is why different indices, N and M, were chosen for the rule
patterns and actions.

Zero or more patterns may be written after the rule header. Each pattern consists of
one or more fields. In the duck rule, the pattern is (animal-is duck), where the fields are
"animal-is" and "duck". CLIPS attempts to match the patterns of rules against facts in

—24 —

the fact-list. If all the patterns of a rule match facts, the rule is activated and put on the
agenda. The agenda is a collection of activations which are those rules which match
pattern entities. Zero or more activations may be on the agenda.

The symbol "=>" that follows the patterns in a rule is called an arrow. The arrow
represents the beginning of the THEN part of an IF-THEN rule (and may be read as
"implies").

The last part of a rule is the list of zero or more actions that will be executed when the
rule fires. In our example, the one action is to assert the fact (sound-is quack). The term
fires means that CLIPS has selected a certain rule for execution from the agenda.

& A program will cease execution when no activations are on the agenda.

When multiple activations are on the agenda, CLIPS automatically determines which
activation is appropriate to fire. CLIPS orders the activations on the agenda in terms of
increasing priority or salience.

The part of the rule before the arrow is called the left-hand side (LHS) and the part of
the rule after the arrow is called the right-hand side (RHS). If you enter a (reset)
command, CLIPS memory is cleared and the special fact (initialfact) is always put into
the fact-list with fact-identifier "f-0". If no patterns are specified, the pattern (initial-fact) is
used for the LHS.

Let's Get Quacking

CLIPS always executes the actions on the RHS of the highest priority rule on the
agenda. This rule is then removed from the agenda and the actions of the new highest
salience rule is executed. This process continues until there are no more activations or
a command to stop is encountered.

You can check what's on the agenda with the agenda command. For example,

CLIPS> (agenda)

0 duck: -0
For a total of 1 activation.
CLIPS>

The first number "0" is the salience of the "duck" activation, and "f-0" is the fact-
identifier of the fact, (animal-is duck), which matches the activation. If the salience of a
rule is not declared explicitly, CLIPS assigns it the default value of zero, where the

possible salience values range from -10,000 to 10,000. In this book, we'll use the
definition of the term default as meaning the standard way.

If there is only one rule on the agenda, that rule will fire. Since the LHS pattern of the
duck-sound rule is

(animal-is duck)

this pattern will be satisfied by the fact (animal-is duck) and so the duck-sound rule
should fire.

Each field of the pattern is said to be a literal constraint. The term literal means
having a constant value, as opposed to a variable whose value is expected to change.
In this case, the literals are "animal-is" and "duck".

To make a program run, just enter the run command. Type (run) and press the
carriage return key. Then do a (facts) to check that the fact was asserted by the rule.

CLIPS> (run)
CLIPS> (facts)
f-0 (animal-is duck)

f-1 (sound-is quack)
For a total of 2 facts.
CLIPS>

Before going on, let's save the duck rule with the save command so that you don't
have to type it in again (if you haven't already saved it in an editor). Just enter a
command such as

(save "duck.clp™)
to save the rule from CLIPS memory to disk and name the file "duck.clp" where the
".clp" is simply a convenient extension to remind us this is a CLIPS source code file.

Note that saving the code from CLIPS memory like this will only preserve the optional
rule-header comment in quotes and not any semicolon comments.

Kick your Duck

An interesting question may occur to you at this time. What if you (run) again? There is

— 2% —

a rule and a fact which satisfies the rule, so the rule should fire. However, if you try this
and (run) again, you'll see that the rule won't fire. This may be somewhat frustrating.
However, before you do something drastic to ease your frustration — like kicking your
pet duck — you need to know a little more about some basic principles of expert
systems.

A rule is activated if its patterns are matched by a

1. a brand new pattern entity that did not exist before or,
2. a pattern entity that did exist before but was retracted and reasserted, i.e., a
"clone" of the old pattern entity, and thus now a new pattern entity.

The rule, and indices of the matching patterns, is the activation. If either the rule or
the pattern entity, or both change, the activation is removed. An activation may also be
removed by a command or an action of another rule that fired before and removed the
conditions necessary for activation.

The Inference Engine sorts the activations according to their salience. This sorting
process is called conflict resolution because it eliminates the conflict of deciding which
rule should fired next. CLIPS executes the RHS of the rule with the highest salience on
the agenda, and removes the activation. This execution is called firing the rule in
analogy with the firing of a neuron. A neuron emits a voltage pulse when an appropriate
stimulus is applied. After a neuron fires, it undergoes refraction and cannot fire again
for a certain period of time. Without refraction, neurons would just keep firing over and
over again on exactly the same stimulus.

Without refraction, expert systems always would be caught in trivial loops. That is, as
soon as a rule fired, it would keep firing on that same fact over and over again. In the
real world, the stimulus that caused the firing eventually would disappear. For example,
a real duck might swim away or get a job in the movies. However, in the computer
world, once data is stored, it stays there until explicitly removed or the power is turned
off.

The following example shows activations and firing of a rule. Notice that the (watch)
commands are used to more carefully show every fact and activation. The arrow going
to the right means an entering fact or activation while an arrow to the left would mean
an exiting fact or activation.

CLIPS> (clear)

CLIPS> (defrule duck
(animal-is duck)

=>
(assert (sound-is quack)))

— 27 —

CLIPS> (watch facts)

CLIPS> (watch activations)
CLIPS> (assert (animal-is duck))
==> -0 (animal-is duck)

==> Activation 0 duck: f-@ ; Activation salience is 0 by
<Fact-0> ; default, then rule name:pattern entity index
CLIPS> (assert (animal-is duck)) ; Notice that duplicate fact
FALSE ; cannot be entered

CLIPS> (agenda)

) duck: f-0

For a total of 1 activation.
CLIPS> (run)

==> f-1 (sound-1is quack)

CLIPS> (agenda) ; Nothing on agenda after rule fires
CLIPS> (facts) ; Even though fact matches rule,

f-0 (animal-is duck) ; refraction will not allow this

f-1 (sound-1is quack) ; activation because the rule already
For a total of 2 facts. ; fired on this fact

CLIPS> (run)

CLIPS>

You can make the rule fire again if you retract the fact and then assert it as a new fact.

Show Me the Rules

Sometimes you may want to see a rule while you're in CLIPS. There's a command
called ppdefrule — the pretty print rule — that prints a rule. To see a rule, specify the rule
name as argument to pprule. For example,

CLIPS> (ppdefrule duck)
(defrule MAIN: :duck

(animal-is duck)

=>

(assert (sound-is quack)))
CLIPS>

CLIPS puts different parts of the rule on different lines for the sake of readability. The
patterns before the arrow are still considered the LHS and the actions after the arrow
are still considered the RHS of the rule. The term MAIN refers to the MAIN module that
this rule is in by default. You can define modules to put rules in analogous to the

— 28 —

statements that may be put in different packages, modules, procedures, or functions of
other programming languages. The use of modules make it easier to write expert
systems having many rules since these may be grouped together with their own
agendas for each module. For more information, see the CLIPS Reference Manual.

What if you want to print a rule but can't remember the name of the rule? No
problem. Just use the rules command in response to a CLIPS prompt and CLIPS will
print out the names of all the rules. For example, enter

CLIPS> (rules)

duck

For a total of 1 defrule.
CLIPS>

Write to Me

Besides asserting facts in the RHS of rules, you also can print out information using the

printout function. CLIPS also has a carriage return/linefeed keyword called crlf which is
very useful in improving the appearance of output by formatting it on different lines. For

a change, the crifis not included in parentheses. As an example,

CLIPS> (defrule duck
(animal-is duck)

=>
(printout t "quack" crlf)) ; Be sure to type in the "t"
==> Activation 0 duck: -0
CLIPS> (run)
quack
CLIPS>

The output is the text within the double quotes. Be sure to type the letter "t" following
the printout command. This tells CLIPS to send the output to the standard output
device of your computer. Generally, the standard output device is your terminal (hence
the letter "t" after printout.) However, this may be redefined so that the standard output
