Reference Manual

Volume I
Basic Programming Guide

Version 6.24
June 15th 2006

CLIPS Reference Manual

CLIPS Basic Programming Guide
Version 6.24 June 15th 2006

CONTENTS
License Information i
Preface iii
Acknowledgements vii
Section 1 - Introduction 1
Section 2 - CLIPS Overview 3
2.1 Interacting With CLIPScooiiiiiiee ettt e e e e e 3
2.1.1 Top Level CommAandS.........c.ceeiuiieriieiniieeieeeieeeite ettt et ssaree st e s e sieees 3
2.1.2 Automated Command Entry and Loadingccccceeeviieniiiinciieeniie e 4
2.1.3 Integration with Other Languagesccooueeeiiieiiiiiiniieeniieeeieeeeeeee e 5
2.2 Reference Manual SYNTAXcc.eeecueeeriieeiriieeniieerieeesiteeeireeesteeesaeeesseeessseeessseesnsseesnsseesnseens 5
2.3 Basic Programming EI@MENtS.........cccc.eiiiiiiiiiiiiiiieeieeeiieeeteeteeste et s 6
2.3.1 DAt TYPES cuvveeerrieeiiieeitieeeitieeeiteeesteeesteeeseteeessseeesaeeasseeesssaeessseaeasseeessseeensseesnsseesnseens 6
2.3.2 FUNCLIONS ...ttt ettt et ettt e ettt e ettt e st e e sabeeesabeeesabeeesabeesbbeesanteesaneeas 9
2.3.3 CONSIITUCES ..vveeeeruiiieeeeriiieeeenitteeeeitteeessitteeeestteeeesabaeeessssseeesannsaeeessnnseaeesassaeessnnseeeas 10
2.4 Data ADSITACTION «...eeiiiiiieiieieite ettt ettt et e ettt e et eeeabteesabteesabeeesabeeesabeesnbeesnneesanee 10
P B B S 161 £ O PRSPPI 10
2.4.1.1 Ordered FaCtsuiiiiiiiiiiieiee ettt ettt et 11
2.4.1.2 Non-ordered FaCts.........ccocuiiiiiiiiiiieciie ettt et 12
2.4. 1.3 INItHAl FACES...couuiiiiiiiiiiieee ettt e st 13
242 ODJECLS ..veevieeiieiieeieeste et estteeteestteeteestee e bt essseeseessseasbeessaeessaessseasseeasseenseesseesseeseas 13
2.4.2.1 INTHAL ODJECES...eeiiuiiiiiiieiiiieeiee ettt ettt e st e s b e e 14
P G € 1 10) o BV g 1 o) (<SR 14
2.5 Knowledge Representationeiiriieeriieeiiieeiieeeiieeeieeeeite ettt st s 15
2.5.1 Heuristic Knowledge — RUIESccceeviiiieiiiieiieceeeeeeee e 15
2.5.2 Procedural KnoWIEdEe..........cooviiiiiiiiiiieeiieeieeeteeete ettt s 16
2.5.2.1 DEffUNCLIONS.eeiiiiiieiieeeiieeeiee ettt e et e et eeeete e et eesreeesabeeesaseeennseeenneeennns 16
2.5.2.2 GENETiC FUNCHONSoouviiiiiiiiiiie ettt 16
2.5.2.3 Object MesSsage-PasSingccccecviiieriieeiiieeiieeeiieeeiieeereeesreeesveeeseveeennaee e 16
2.5.2.4 DefMOAUIESeeiiiiiiiiiieeiie et 17
2.6 CLIPS Object-Oriented LangUAZE.........cccuveerueeerieeeiieeeiieeeieeesteeesseeesseeesseesssseesnssessnnns 17
2.6.1 COOL Deviations from a Pure OOP Paradigm............cccoevieeviiiiiniiiiinieeniiieeieenne 17
2.6.2 Primary OOP FEAUIEScccuviiriiieriieeiieeeiieeerteeeteeetreesaeeesreeessaeeesnseeenseeenneesnnns 18
2.6.3 Instance-set Queries and Distributed ACHONS.......ccvvveeerevieeeeiiiieeeeeiiee e e 18
Section 3 - Deftemplate Construct 19

CLIPS Basic Programming Guide i

CLIPS Reference Manual

Section 4 - Deffacts Construct

Section S - Defrule Construct
5.1 Defining RULES ..cc..eeiiiiiiiiiiiiiieieceeeeeeee e
5.2 Basic Cycle Of Rule EXecutioncceecvveeviieeiieeniieeeieeeee e
5.3 Conflict Resolution Strategiesccceeevveerriieeriieeniiieenieeenieeeneeenn
5.3.1 Depth Strateyccccveeeiiieeiiieeeiee et eee e e
5.3.2 Breadth Strate@y......c.ceevueiiriiiiiiieiiieeeeeeeeee e
5.3.3 SIMPILICItY StrateEY.....ccevvrieriieeiiieeiieeerieeeeeeere e e sree e
5.3.4 Complexity Strate@ycceevveeeriueeerieeeiieeniieeeiieeesieeesreessieeens
S35 LEX SrAt@ZY veeevveeeiieeeiieeeieeesteeesteeesveeesveeeseeesneeesnveeennveens
5.3.6 MEA SHrate@y «....eeeviieiiiiieieeeiiee ettt
5.3.7 Random Strategy........ccccveeriiieeriieerieeenieeeieeeieeesieeesveeennveees

S:4 LHS SYNEAX .ettuitiiiiieieiieeeiee ettt ettt ettt et e e st e s e e eesaaee s
5.4.1 Pattern Conditional Element...........cccccocveeeviiiniiieniieeniieeeen,
5.4.1.1 Literal ConsStraints..........ccceeereeeerreennieenieeenieeenieeenneens

5.4.1.2 Wildcards Single- and Multifield............ccccceeveenriennnenn.

5.4.1.3 Variables Single- and Multifield..........cc.ccccoeviernennnneen.
5.4.1.4 Connective CONSIIAINESeeereveeerreeerreeeiieeeieeenveeenneens

5.4.1.5 Predicate CONStraintscccceeeevveennveeniieeeniieeenieeenneens

5.4.1.6 Return Value CONSraints.........ceevveeerveeeireenineeeniveeenneens

5.4.1.7 Pattern-Matching with Object Patterns............cccceeuuee.

5.4.1.8 Pattern-Addressescvveeveeerieeenieeeiiee e

5.4.2 Test Conditional Elementccoocueeeiiieniiieeniieiniieenieeeeenn
5.4.3 Or Conditional Element...........cccccevvueeeriieeiiieeieeeiieeeiee e
5.4.4 And Conditional Elementccccceeeiiieniiiiniieiniieeniieeeen,
5.4.5 Not Conditional Elementcccccceveviieeiieeniieeeiieeeiee e
5.4.6 Exists Conditional Element.............cccoevveeniiiiniiieniieinieeneen.
5.4.7 Forall Conditional Element............cccceeevvieeriieniieeniieeeiee e
5.4.8 Logical Conditional Element............cccccueevviiiiniiieniieiniienneen.
5.4.9 Automatic Addition and Reordering of LHS CEs...................
5.4.9.1 Rules Without Any LHS Pattern CEs........cccccceeueeennneen.

3.1 Slot Default Values.........occeiviiiiiiiiiiiiiiiceieeeeeeeeeeeeee e
3.2 Slot Default Constraints for Pattern-Matchingccccceevveeennenn.
3.3 Slot Value Constraint AttribUtes..........ceevveerrieeriiieeniieeniieenieeeeeenn
3.4 Implied Deftemplates..........ccocvieiiiieiiieeiee e

5.4.9.2 Test and Not CEs as the First CE of an And CE

5.4.9.3 Test CEs Following Not CEs.........ccoccvevviiiniieiniiiennneen.
5.4.9.4 Or CEs Following Not CESs.........ccccceeiiiniiiiiiniineeneens
5.4.9.5 Notes About Pattern Addition and Reordering...............
5.4.10 Declaring Rule Properties..........ccocveevveeerieeeiieenieeevee e
5.4.10.1 The Salience Rule Propertycceceevvieenieennieennneen.

Table of Contents

5.4.10.2 The Auto-Focus Rule Propertycccocveevueeenee.

CLIPS Reference Manual

Section 6 - Defglobal Construct

Section 7 - Deffunction Construct

Section 8 - Generic Functions

8.1 Note on the Use of the Term Method...............cccccovueeeunenn.e.
8.2 Performance Penalty of Generic Functionsccccccceeuvennnee.

8.3 Order Dependence of Generic Function Definitions

8.4 Defining a New Generic Functionc.cceceeveieeieieeenneenne,
8.4.1 Generic Function Headers............ccoeevvvreeieeeeeieciinnenennen.
8.4.2 Method INAICES......ccovuvveiieeieeeeeeeeeeeeeeeee e
8.4.3 Method Parameter Restrictions.........ccccveeeeeeeeeeccnvveneennen.
8.4.4 Method Wildcard Parameter.........cooovvvveeeeeeevicinneeenneen.

8.5 Generic DispatCh.........ccovuiiiiiiiiiiiiiiieccceeee e
8.5.1 Applicability of Methods Summary...........c.cccevvveeuvennee.
8.5.2 Method Precedence..........ccvvveeeeeeeeeecinneeeeeeeeeeeecirveeeeeen.
8.5.3 Shadowed Methods........ccccvvvveeiiiiiiiiiieeeeeee e
8.5.4 Method Execution EIrors...........ccoevvvvivveeeeeceeieciinreeeenen.
8.5.5 Generic Function Return Valueccccccovevvvvvvinnnnnnnnnen.

Section 9 - CLIPS Object Oriented Language (COOL)

9.1 Background..........ccceeeiiiiiiiiiiiiiiiieeeeeeeee e
9.2 Predefined System Classescoovueeeriieiniiieiniieennieenieesieeenns
9.3 Defclass CONSLIUCEccuvveeriiieeiieeeiieeeieeeeieeeevee e eaeeeiaeeens
9.3.1 Multiple Inheritance..........cccccueevvueeeriiieiniiieinieeiiee e
9.3.1.1 Multiple Inheritance Rules...........ccccerieeniennennen.

9.3.2 Class SPECIfIeIS.....cccvuierriiieriiieriieeeiieeriee et
9.3.2.1 Abstract and Concrete Classes........coeevveeerveeernnenns
9.3.2.2 Reactive and Non-Reactive Classes............ccccu......

9.3.3 SIOtS. ettt
9.3.3.1 Slot Field TypPe.....cccvvervuveeniieeniieiieeerieeeiee s

9.3.3.2 Default Value Facetc.ccceeveieincieeniieeieeciee

9.3.3.3 Storage Facet.........cccevviieeiiiiniiiiiieiieeee e
9.3.3.4 Access Facet........cooiveiiiiiiniiiiiiiiieeeeee e,

9.3.3.5 Inheritance Propagation Facet............cccceeveeneneee.
9.3.3.6 Source Facet........ccceeeviieeiiieeieeeee e
9.3.3.7 Pattern-Match Reactivity Facet...........c.ccoeeveernnen.
9.3.3.8 Visibility Facet.......cccccoviiriiiniiiiiiiicciceeeee,
9.3.3.9 Create-Accessor Facetccooceevvviiiniiiinieennneen,
9.3.3.10 Override-Message Facetccccoeceerveenicnnennnn.
9.3.3.11 Constraint Facets..........cceccueeruierniiiiniiiennieenieens

9.3.4 Message-handler Documentation.............cceeeeeueeneenneen.

CLIPS Basic Programming Guide

CLIPS Reference Manual

9.4 Defmessage-handler CONSIIUCTcoouiiiiiiiriiieeriie ettt 101
9.4.1 Message-handler Parameterscoceoviiiiiiniieiiiinieeieeeeeeee et 103
9.4.1.1 Active Instance Parameterccceevieriieiniiniiinieneccceeee e 103
9.4.2 Message-handler ACHIONS.cocueiiiiiiiirierieeete ettt 104
9.4.3 DACIMNIONS ...ttt ettt ettt ettt et e bt e sae e st e bt e et e s e s ne e neesaneenneesaneens 106
9.4.4 Predefined System Message-handlers...........ccocueeueiriiniiiniiiiiinienieeieeeeeeeee 106
9.4.4.1 Instance INitialiZation...........cocueeriiriiiiiieniieieeeeeeee e 106
9.4.4.2 InStance DI tiONcc.eeiiiiiiiiiiiiiiiieeeet et 107
9.4.4.3 INStance DISPIAY.......ceiiiiiiiiiiiiiieeiieeeiteeete et 108
9.4.4.4 Directly Modifying an INStanceccoceerieriiinienieenieiieeeceieeee e 108
9.4.4.5 Modifying an Instance using MeSSagesccocuerrueeiriierniiennieesnieesieee e 109
9.4.4.6 Directly Duplicating an INStanceccoceeveeeieinieniieenieiieeie e 109
9.4.4.7 Duplicating an Instance using MeSSagescceeevueerririerniierniieeinieesieeesieees 110
9.4.4.8 INSLANCE CTEAtION ...eouviiiuiiiiiiiiieiie ettt ettt ettt sttt et sbee e esaees 110

9.5 MeSSagE DISPALCHcoiiiiiiiiiiiiie et st s 110
9.5.1 Applicability of Message-handlerscocceeviieiiiniiniiiniiiieeeeieeeeeee e 111
9.5.2 Message-handler PreCedence.........ooouuieviiiiriiiiiiieiniieeieeee et 111
9.5.3 Shadowed Message-handIers...........cooeiiiiiiiiiiiiiiiiieeec e 112
9.5.4 Message EXecution EITOTSccoouiiiiiiiiiiiiiiiieiccee ettt 112
9.5.5 Message Return ValUecoccoouiiiiiiiiiiiiiieeieeeeceee et 113
9.6 Manipulating INSANCESeeiriiiiiiiieiiiieeite ettt ettt e st e s 113
9.6.1 Creating INSTANCESccouuieiiiriierieeite ettt st sbe e st e saeesareens 113
9.6.1.1 Definstances CONSIIUCEooveeriirieerierieenite ettt 115
9.6.2 Reinitializing EXisting INStancCes.covuerieiriiiiiinieiieerieeeeeeeeee e 116
9.6.3 REAAING SIOLS ..ceniiiiiiiiieiiie ettt ettt st e st e s esaaaees 118
9.6.4 SELUNG SIOLSeeiiiiiiieie ettt et ettt et be e sttt en 118
9.6.5 Deleting INSTANCESveeerieieiiiieeiieeeiie ettt ettt ettt st e st esaeeesaaeees 119
9.6.6 Delayed Pattern-Matching When Manipulating Instancesccccceeceeeveeniennene 119
9.6.7 MOdifying INSTANCES.cccuutiiiiiieiiiieiiieeeiie ettt ettt e st e e e saaees 120
9.6.7.1 Directly Modifying an Instance with Delayed Pattern-Matching.................. 120
9.6.7.2 Directly Modifying an Instance with Immediate Pattern-Matching.............. 121
9.6.7.3 Modifying an Instance using Messages with Delayed Pattern-Matching......121
9.6.7.4 Modifying an Instance using Messages with Immediate Pattern-Matching..122
9.6.8 DUplicating INSLANCES......ccueiiuiiriiiiiieieeite ettt ettt e e 122
9.6.8.1 Directly Duplicating an Instance with Delayed Pattern-Matching................ 122
9.6.8.2 Directly Duplicating an Instance with Immediate Pattern-Matching 123

9.6.8.3 Duplicating an Instance using Messages with Delayed Pattern-Matching....123
9.6.8.4 Duplicating an Instance using Messages with Immediate Pattern-Matching 124

9.7 Instance-set Queries and Distributed ACHIONS...........ccoeivviirreeieeeeeieiiciieeeee e 125
9.7.1 Instance-Set DefINItIONccoovvvuvviiiiiiiiiiiciee et e e 126
9.7.2 Instance-set Determinationc..veeeeeeeeeieeiiiireeeeeeeeeeiieinrreeeeeeeeeesinrrreeeeeeeeessesnseens 127
9.7.3 QUETY DEfINItION ...cueiiiiiiiiiiiiiieeite ettt s 128
9.7.4 Distributed Action Definitionc..eieeieeiiiiieieeeeeieeiiiirieeeee e e 129

Table of Contents

CLIPS Reference Manual

9.7.5 Scope in Instance-set Query FUNCHONS...........covuiiiriiiiiniiiiiieeice e 130
9.7.6 Errors during Instance-set Query Functionsccccceveeniiiiiiniinicinicieeieeeee 130
9.7.7 Halting and Returning Values from Query Functions...........cccecccevvveerniecineeennnen. 131
9.7.8 Instance-set QUEry FUNCHIONS.c...coiuiiiiiiiiiiiiieiieteeee et 131
9.7.8.1 Testing if Any Instance-set Satisfies @ QUETY.........ccoevveerriiirniieiiniieeriieenen, 131
9.7.8.2 Determining the First Instance-set Satisfying a Query.........ccccceeveevieeeennee. 131
9.7.8.3 Determining All Instance-sets Satisfying a QUery........cccocceevvveernieeriveennnen. 132
9.7.8.4 Executing an Action for the First Instance-set Satisfying a Query................ 132
9.7.8.5 Executing an Action for All Instance-sets Satisfying a Querycc......... 133
9.7.8.6 Executing a Delayed Action for All Instance-sets ~ Satisfying a Query......133
Section 10 - Defmodule Construct 135
10.1 Defining MOAUIESccooiiiiiiiieiiieceeeite ettt eee e e re e s eee s e e eiveeeseaeeennseeenseeens 135
10.2 Specifying a Construct’s Module..........cc.eoiriiiiiiiiiiiieiieeeiecteeee e 136
10.3 Specifying MOAUIEScc.eiiiiuiiiiiiecieeeee ettt tee e s e e e e seaeeesaveeenseeens 137
10.4 Importing and EXporting CONSIIUCES.ceruiiiriieeriieeiieeeiieeeiteesieeesieeesiieesieeessieee s 137
10.4.1 EXPOTting CONSIIUCESveeeurieeiieeeiieeeieeesteeesteeessteeessseesssesssseeessseeessseessssesssseesns 138
10.4.2 IMpOTrting CONSIITUCESeervieeriieiiiieeriieerieeerieee et e ettt esbeeesbteesibeessabeessareesneeenas 139
10.5 Importing and Exporting Facts and InStances.............ccooeevierieinieniieenieeieenie e 139
10.5.1 Specifying Instance-NAMESccceeeriiiiiiiiiiiieeiee ettt 140
10.6 Modules and Rule EXECULIONc..oiiiiiiiiiiieciiiiec et et 140
Section 11 - Constraint Attributes 143
T1.1 TYPE ALIIDULEveeeiiieeiie ettt et et e et e et e e etaeessaeesssaeessseeessseeensseesnnseesnsseenns 143
11.2 Allowed Constant AttITDULES.eeieiiiiriiieiie ettt sttt e s e saeeeeas 144
11.3 RANZE ALITDULEceeuiieiiiieeiieeeiieeeiee et e et e e st e et e e eeaeeetaeessbaeessseeessseeensseesnnseesnnseenns 145
11.4 Cardinality ATIIDULEcccueeiiiieiiiieeeite ettt ettt st esaeeesaeeeens 145
11.5 Deriving a Default Value From CONnStraints..........cccueeerieeerieeniieeniieenieeesieeesveeennneeens 146
11.6 Constraint Violation EXamples..........ccovviiiiiiiiiiiiiiiieiieeciecetecrte et 147
Section 12 - Actions And Functions 149
12.1 Predicate FUNCHIONS....cc..eiiiiiiiirieeieeeteeeeeeeteee ettt e 149
12.1.1 Testing FOr NUMDETScooutiiiiiiiiiieieeieetee ettt 149
12.1.2 TeSting FOT FIOALScccueiiiiiiiiiieiiiieeie ettt et 149
12.1.3 Testing FOr INtEZETSccouviiiiiiiiiiieeieete ettt 149
12.1.4 Testing For Strings Or SYMDOISccccueeiiiiiiiiiiiiieeieceiieceiteeee e 150
12.1.5 TeStNG FOT STINEZS...eeiiuiiieiiieiiieeeiie ettt et e e e see e e aeeesbeeessaeeenaseesnaeeens 150
12.1.6 Testing FOr SYmDbOIScoouiiiiiiiiiiiie et 150
12.1.7 Testing For Even NUMDETScoooiiiiiiieiiieeiee ettt e s 150
12.1.8 Testing FOr Odd NUMDETScooviiiiiiiiiiiiieiieeieeceeee ettt 150
12.1.9 Testing For Multifield Values............cooieiiiiiiiiiiiieeeeeeete e, 151
12.1.10 Testing For EXternal-AddresSes.......oouuiiriiiiiiieiiiieeiieeeiieeeieeeriee et 151
12.1.11 Comparing for EQUALItYccceeeiiiiiiiieiiie ettt 151

CLIPS Basic Programming Guide v

CLIPS Reference Manual

12.1.12 Comparing for IN@qUality.........cocceeiiiiiiiiiiiiiieeieeeteeeeeeeee et 151
12.1.13 Comparing Numbers for EQUality.........cccceeriiiieiiiieeiiieeiieeeiieceee e 152
12.1.14 Comparing Numbers for Inequalitycccoceeeviiiniiiiiiiiinieiieceeeee e 152
12.1.15 Greater Than COmMPATISON........ccecuvieriiieeriieerieeerieeesreeeereesreeesreeesseeessseessseenns 153
12.1.16 Greater Than or Equal COMPATISONcc.ueiiriiiiiiiieiiieeiiieeeiteesiee et 153
12.1.17 Less Than COMPATISONeeeuiieriuieeriieenieeesieeesieeeseeeessreesseeessseeesseesssseessseenns 154
12.1.18 Less Than or Equal COMPATiSON.........ccevviiiiiieiiieeeiieeniieeeiteesieeesiieeesieee s 154
12.1.19 BOOIEANn ANcooueiiiiiiiieiiee ettt 154
12.1.20 BOOIEAN OF ...ttt ettt s 155
12.1.21 BOOICAN NOLeiiiiiieeiiieciieeeteeeee ettt ettt e e e e stee e e aeeesnveeessseeennseesnneeens 155
12.2 Multifield FUNCHONS. ..c...coiiiiiiiiiiiiceiceerceeee et 155
12.2.1 Creating Multifield ValUescccouieriiiiiiiiieiieeeeeeeee et e 155
12.2.2 Specifying an EIEMENtcoocuviiiiiiiiiiiiiiiieieeeeeeeeeeeteeete et 156
12.2.3 FINding an EIEMENt........ccoiiiiiiiiiiiiieciie ettt ettt eee et svee e siveeeseveeeaaeeea 156
12.2.4 Comparing Multifield Valuesccoocueiiiiiiiiiiiiiiiieceeeectecee e 156
12.2.5 Deletion of Fields in Multifield Valuescccceevuieeiiieeiieinieecieeeeecee e 157
12.2.6 Creating Multifield Values from Strings.ccccoeveiriiiniiniiinicniecieeeceeeeens 157
12.2.7 Creating Strings from Multifield Valuesccccceeeviieeiiieniieecie e 158
12.2.8 Extracting a Sub-sequence from a Multifield Value...........c.coceriiiniininncnncn, 158
12.2.9 Replacing Fields within a Multifield Value............cccoccoiiiiiiiniiiiiiiices 159
12.2.10 Inserting Fields within a Multifield Value...........cccoccoiiiiiiniiniiiices 159
12.2.11 Getting the First Field from a Multifield Value...........cccccceevviencieeniieiieeciene 160
12.2.12 Getting All but the First Field from a Multifield Value............cccccooveeiiininnen, 160
12.2.13 Determining the Number of Fields in a Multifield Value.............cccceevveennnnn. 160
12.2.14 Deleting Specific Values within a Multifield Value............ccccccooeeniniiincnnen, 160
12.2.15 Replacing Specific Values within a Multifield Valueccccceeveviiinieennenn. 161
12.3 String FUNCHIONSceieiieiiiieiiieeeite ettt ettt ettt e st e et essaaeesaaeesaeeeeas 161
12.3.1 String CONCALENATION.cccuveeeiieeeireeeieeesteeesteeesteeesereessreesseeeasseeessseeesssesssseenns 161
12.3.2 Symbol CONCAteNAtIONeeiriieiiiieeriieeriteeertee et e et e e sbteeebteesabeessaneessabeesnaeenas 162
12.3.3 TaKing @ StriNG APATt......ccccveeeiuieeeiieeeiieerteeesteeesteeesereessreesseeesseeessseessssessnsseenns 162
12.3.4 Searching @ SNccc.eeeriiiiiiiieiiiie ettt ettt ettt e e essabeesaaeeeas 162
12.3.5 Evaluating a Function within @ Stringccccceeevviieeiiieeiieeeie e eevee e 163
12.3.6 Evaluating a Construct within @ Stringcccceeceeviiriiiniiniiiieneeeeeeeeeeeens 163
12.3.7 Converting a String t0 UPPETCASEc.ueeruvreerureerieeerireeeireeeaeeesreeesseessseessseenns 164
12.3.8 Converting a String t0 LOWETCASE....c.cuuerriiieiiieeiieeeiieeeiee et esreeesiree e s 164
12.3.9 Comparing TWO STINESc.eeriiiiiiiiieieee ettt 164
12.3.10 Determining the Length of @ Stringccoovueeiiiiiniiiiiiiiiieeeeeee e 165
12.3.11 Checking the Syntax of a Construct or Function Call within a String................ 165
12.3.12 Converting a String t0 @ Field........coociiiiiiiiiiiiiiieiecete e 166
12.4 The CLIPS I/O SYSLEIMeetieiiiriieieeieetteie ettt ettt st sae et sseesteeneesaeenseeneesneenees 166
12.4.1 LOZICAl NAMES ...cevuiiieiiiieiiieeiiieeeite ettt ettt ettt e sbte e st eesibee s s e sateesnaeeeas 166
12.4.2 Common I/O FUNCHONS.coiiiiiiiiiieiieieeieeee ettt 167
T2.4.2.1 OPCN..iiiniiiiiiiee ettt ettt ettt et e ettt e sttt e sttt e st e e sabeessabeesnsseesbneenas 167

vi Table of Contents

CLIPS Reference Manual

12.4.2.2 CLOSE ..ttt e ettt e e e et e e e e eaaa e e e eeaaae e e eeaaseeeeearaeeeeenaneeens 168
12.4.2.3 PIINTOUL.....cciiiiiiiiiieeeie ettt eeeeae et e e e e e ettt e e e e e e seeaabaereeeeeeeeennsraenees 169

T2 4.2 4 REAA ...ttt et e e e et e e e as 169
12.4.2.5 REAAINE ..ot e e et e e e e e e e e eaaaaaes 170
12.4.2.6 FOIMIAL.......ccoiiiiiiiieeeee e ettt eeeeere e e e e e eeeaarreeeeeeeeeeabsreeeeeeeeennnnnnnees 171

| B S A) 1 oo IR 173
12.4.2.8 REIMOVE .ccoeeeeeiiiireeiee ettt e e eeeetr e e e e e eeettrreeeeeeeeeeabrseereeeeeeennnnsnes 173
12.4.2.9 Get CharacCter..........ooooviiiiiiiiiiieee 174
12.4.2.10 Read NUIMDETveeiiiiiiieiiieieeeee ettt e e e eeearrr e e e e e e e e e nanneees 175
12.4.2.11 SEt LOCALE......eeveieeeiiiiieieeeee e 175
12.5 Math FUNCHIONSuuvvviiiieeieiieciieeeee ettt e e e eeetreeeeeeeeeeeeatrareeeeeeeeseeasssaseeeseesennnns 176
12.5.1 Standard Math FUNCHONSuvvvviiiiiiiiiiiieeeiecc et eeeearaee e 176
12.5. 1.1 AQQITION c.veeiiiiiiee ettt e et e et e e e eeaaeeeeeareeeeeenaneeeas 176
12.5.1.2 SUDITACHIONuevvvvieeiiee ettt ee e e e e e e s e aaaarreeeeeeeeennsananees 177
12.5.1.3 MUItPHCAtION. ..c..eeiiiiiieeiieeeiie ettt et s 177
12.5. 1.4 DIVISION.....ciiiiiiiiieieieeeeieeitieeeee e e e eeeeaee e e e e e eeeesaaaareeeeeessensastsrreeeeeseeessrrenees 178
12.5.1.5 INteZEr DIVISION ...eeiiuiiiiiiiiiiiieeeite ettt ettt ettt et saeeeeas 178
12.5.1.6 Maximum NUMETIC VAIUEoccovvviiiiiiiiiieiieeeieeeeee e e 179
12.5.1.7 Minimum NUMETIC VaAlUCcccccoieiviiiririiieeeieeeciireeeee e et eeee e 179
12.5.1.8 ADSOIULE VAIUE......ooiiiiiiiiiiieiiiie ettt e e e 179
12.5.1.9 Convert TO FLOAt.........ccoooiiiviiiiiei ittt e 180
12.5.1.10 Convert TO INTEEET...ccccuuiiiiiiiiiieeeiiiiee ettt 180
12.5.2 Extended Math FUNCHONScceiiiiiieiiiiiieiiee et eeeerreeee e 180
12.5.2.1 Trigonometric FUNCHONS.c.ceiviiiieriieeiiie ettt see e e 181
12.5.2.2 Convert From Degrees to Gradscocveeeveeeiiiieniieeniieenieeeniee e 182
12.5.2.3 Convert From Degrees to Radians............ccocuveeviieeiieeeiieeniieceiee e 182
12.5.2.4 Convert From Grads t0 DEgIeesccocveeeriieiiiiieeniiiieniieerieeeriee e 182
12.5.2.5 Convert From Radians to Degrees.........cccoevviieriieeiieeeiieeniieceiee e 183
12.5.2.6 Return the Value Of Tl......cccvvvieiiiiiiiiiieeeee e 183
12.5.2.77 SQUATE ROOL......eeiiiiiiiiieeiiiiee ettt e et e e st e e e saaeee s 183
L2.5. 2.8 POWET .oveeieeieeeiteeeee ettt ettt e e e e et e e e e e e e e atareereeeeeeennannnes 183
12.5.2.9 EXPONENHIALeoiuiiiiiiiiiiiieieeeeeee ettt 184
12.5.2.10 LoGarithim.......ccceeiiiiiiiiieieiieeiee ettt ettt s s 184
12.5.2.11 Logarithm Base 10.......cc.coeiiiiriiieieiieeciee ettt eaaee e 184
12.5. 212 ROUNA ..ottt e e e e et e e e e e e eeeeaannnees 185

| B TR B Y (76 111 L TR 185
12.6 Procedural FUNCLIONSccooiiiiiiiiiee e et ettt eeeeeetareeeeeeeeeeenrrareeeeeeeennnns 185
12.6.1 Binding Variablescoccuiiiiieiiiiieciie ettt e et e eive e aeeesvee e siveeesaseesnaeeens 185
12.6.2 If...then...else FUNCLION.........cvvvviiiiiiieiiiieeee e 187
| B C L 1V (OO 188
12.6.4 LOOP-TOT-COUNL....ccoutiiiiiieiiieeiiiee ettt ettt e et e et esabee e st e e sabeeesabeessabeesnaeeeas 188
T2.6.5 PIOZN c.eeiiieete ettt ettt ettt e b e sttt e et e b sareens 189
12.6.6 PrOGNS ...ttt 189

CLIPS Basic Programming Guide vii

CLIPS Reference Manual

viii

12.6.7 RETUIM ...ttt ettt ettt et st et s e e sb e sate e e saneeseesaneens 190
12.6.8 BIEAK ..ottt ettt ettt 190
12.6.9 SWILCR .cneiiiiiee ettt sttt st 191
12.7 Miscellaneous FUNCHONS.cciuiiiiiiiieiieeiceiteeete ettt e 192
L2.7.1 GEISYIM ettt ettt ettt ettt et et e et e sttt e et e e sabte e s bt e esabeeesaseesaabeesnaeenas 192
12.7.2 GENSYII™ ...ttt ettt et st e b e et e bt e st e e bt e eabeenbeesareens 193
L2.7.3 SEEZEM. ..ttt ettt ettt e et e st e st e e st e e s bt e e sabaeseabeesabeesbaeeea 193
12.7.4 RANAOM ...ttt ettt ettt e b e st e bt e eabeenbeesaeeens 193
L2.7.5 SEEA...neeteeee ettt sttt st ettt 194
T2.7.60 TAIMNIC ...ttt ettt et et e et e b e st e e bt e et e e nbeesareens 194
12.7.7 Number of Fields or Characters in a Data Object.........ccccceevviieiniieiniieeinieenieene 194
12.7.8 Determining the Restrictions for a Function............ccoccceiiiiiiiniiniiininiiicees 195
12.7.9 Sorting a List Of VAlUEScoiviiiiiiiiiiieeeeee et 195
12.7.10 Calling @ FUNCHON.....cccuiiiiiiiiiiieieeeeeee ettt 196
12.7.11 Timing Functions and Commands.............coccueeeriieriieeniiieiniieenieeeriee e 196
12.8 Deftemplate FUNCHONSoiiuiiiiiiiiiiieeieee ettt 196
12.8.1 Determining the Module in which a Deftemplate is Defined............cccccceeiennnens 196
12.8.2 Getting the Allowed Values for a Deftemplate SIot..........cccccoviiiiiiniiininnennen, 196
12.8.3 Getting the Cardinality for a Deftemplate SIot.........c.cccovieiiiiniiniiinieeiieceens 197
12.8.4 Testing whether a Deftemplate Slot has a Default.............cocccoiiiiiniiiiininnn, 197
12.8.5 Getting the Default Value for a Deftemplate SIotcccceeeiiviiniiiniiiniincnens 198
12.8.6 Deftemplate S10ot EXIStENCE.......eeiuiiriiiiiiiiiiiieeieeite ettt 198
12.8.7 Testing whether a Deftemplate Slot is a Multifield SIOt.............cocceeviiiriiincnnens 199
12.8.8 Determining the Slot Names Associated with a Deftemplate.............cccccceveennne. 199
12.8.9 Getting the Numeric Range for a Deftemplate S1ot...........ccoevveiviiiiniininiiennnieene 199
12.8.10 Testing whether a Deftemplate Slot is a Single-Field Slot...........ccccceevveennnenn. 200
12.8.11 Getting the Primitive Types for a Deftemplate SIOtccccooeerieinieniiinncnnnens 200
12.8.12 Getting the List of Deftemplates..........ccccuvieiiiiieiiieeiiieeieeeeeeee e 201
12.9 FaCt FUNCHOMNSc..vtiiiiiiiieiieeeeee ettt st e s 201
12.9.1 Creating New Facts......cccuooiiiiiiiieieeeeeee et 201
12.9.2 Removing Facts from the Fact-1iSt.........ccccooiiiiiiiiiiiniiiiiiiiiieteceeeee e 202
12.9.3 Modifying Template FaCts........cocueiiiiiiiiiiiiiieieeee et 203
12.9.4 Duplicating Template Factscccceiviiiiiiiiiiiiieiiieeieeeeeeteeee e 203
12.9.5 ASSEITING @ STINZ....eitiiiiiiiiieeiie ettt ettt et e st e e bt e eabeesaeesareens 204
12.9.6 Getting the Fact-Index of a Fact-addresscoevveeriiiiniiiiniiiiniieiieeciee e 205
12.9.7 Determining If @ Fact EXIStScocuiiiiiiiiiiiiiiieeeeeeeeeeete e 205
12.9.8 Determining the Deftemplate (Relation) Name Associated with a Fact............... 205
12.9.9 Determining the Slot Names Associated with a Fact.............coocoviiiniiniininnn, 206
12.9.10 Retrieving the Slot Value of a Fact...........cooiiiiiiiiiiiiieeee e 206
12.9.11 Retrieving the Fact-Listccooiiiiiiiiiiiiiieeeee e 207
12.9.12 Fact-set Queries and Distributed ACHONSccccvvereeeeeeieiicirireeeeeeeeeeeirreeeeeen. 207
12.9.12.1 Fact-set Definitionccoceiiiiiiiiniiniiiieieeeeeeete e 209
12.9.12.2 Fact-set Determination.........cocueeveerieriernienieenienie et sreesnee e eneees 209

Table of Contents

CLIPS Reference Manual

12.9.12.3 Query Definitioncccueeiriuieiniieiiiieeieeeiee ettt sree s ee s 210
12.9.12.4 Distributed Action Definitionccoceevieriieiiiiniiiiiieeeeieeieeeeeeee, 211
12.9.12.5 Scope in Fact-set Query FUNCtionsccceeevieeriieeniiieeniieinieeeiee e 211
12.9.12.6 Errors during Instance-set Query Functionsccooceeeveinieniiceniennennee. 212
12.9.12.7 Halting and Returning Values from Query Functions.........cc.cccceeveeruneenn. 212
12.9.12.8 Fact-set Query FUNCHONSc.c.ceriiiiiiiiiiieeieeeeee et 212

12.10 Deffacts FUNCHIONS ...cc..eiviiiiiiriieiieeieeteeeeeee ettt st e 216
12.10.1 Getting the List of Deffacts.........ccceeviiiiiiiiiiiiecieceeceece e 216
12.10.2 Determining the Module in which a Deffacts is Definedc.c.ccoceeeveenncnncens 216
12.11 Defrule FUNCHIONS.cc.eiiiiiiiiiieiieeeetee ettt s 216
12.11.1 Getting the List of Defrulescccovviiiiiiiiiiiiiiiiiiceeeeee e 216
12.11.2 Determining the Module in which a Defrule is Defined..........c.cccceeeveeenveennnnenne 217
12.12 Agenda FUNCLIONScooiuiiiiiiiiiiieieiieeite ettt ettt et e st esaeeesaeeeeas 217
12.12.1 Getting the Current FOCUS........coeiiiiiiiiieriie ettt esiee e svee e svee e e seaeeens 217
12.12.2 Getting the FOCUS Stacki........c.uiiviiiiiiiiiiiiiiiiecteceeeete e 217
12.12.3 Removing the Current Focus from the Focus Stack.........cccccceeveiieviieiniieennnene 218
12.13 Defglobal FUNCHONS........oiiiiiiiiiiiiiieeite ettt e st esaeeeeas 218
12.13.1 Getting the List of Defglobals..........ccccoiiiiiiiiiiiiiieeeee, 219
12.13.2 Determining the Module in which a Defglobal is Defined...........ccccccoceevnennens 219
12.14 Deffunction FUNCHONScociiiiiiiiiiiieieeeeteeeete ettt st 219
12.14.1 Getting the List of Deffunctionsccceoiiiiiiiiiiniiieiiieiieeee e 219
12.14.2 Determining the Module in which a Deffunction is Definedcccccueeennennn. 220
12.15 Generic Function FUNCHONS.......cooiiiiiiiiiiiiiieeeeecnceeeee e 220
12.15.1 Getting the List of Defgenerics.........cocverviieiiiieiiieeieeceeeee et 220
12.15.2 Determining the Module in which a Generic Function is Defined..................... 220
12.15.3 Getting the List of Defmethods............coocviieiiiiiiiiiciieceeeeece e 220
12.15.4 Type Determinationceecueeiriuieeniieeriiieerteeeseeeeieeesieeesiteesareessaneessaseessnneesas 221
12.15.5 Existence of Shadowed Methods..........cccvieriiieiiieeiiieeiieecee et 221
12.15.6 Calling Shadowed Methodscooiiiiiiiiiiiiiiieeeieececete et 222
12.15.7 Calling Shadowed Methods with OVErridesccccveeeriieeniiieeniiieenieeeriee e 222
12.15.8 Calling a Specific Methodcceoviiiiiiiiiiiieiieceeeeeeeee e 223
12.15.9 Getting the Restrictions of Defmethods.........ccceoviiiiiiiiiiiiiiiiiiieces 224
12.16 CLIPS Object-Oriented Language (COOL) Functions............ccceecveeenieeinieennieennneenne 224
12.16.1 Class FUNCHIONScoueiiuiiiiieiieeiieeteet ettt sttt 225
12.16.1.1 Getting the List of Defclassesccceeriieiiiiiiiiiiniiiiniieeeeeeeee e, 225
12.16.1.2 Determining the Module in which a Defclass is Defined.......................... 225
12.16.1.3 Determining if @ Class EXISES....ccc.ceviirieriieniiiinienieeeeceeee e 225
12.16.1.4 Superclass Determinationccccveerveeerieeerieeeiieeeireesieeesveeeseveeesaneeens 225
12.16.1.5 Subclass Determinationcocueereerierneenieenienieeneeeee e 226
12.16.1.6 SIOt EXISIENCE....uveeiuiieeiieeeiieeeieeesieeesteeesiaeeesteeeaeeesaeeessseeessseeensseeensneenns 226
12.16.1.7 Testing whether a Slot is Writable..........cccceiriiiiriiiiniiiiniiiieiee e 226
12.16.1.8 Testing whether a Slot is Initializable...........cccccoeevviiiiiiieniiiiieeee e, 226
12.16.1.9 Testing whether a Slot is PUDLIC........ccccueiiiiiiiiiiiiiiiceec e, 226

CLIPS Basic Programming Guide ix

CLIPS Reference Manual

12.16.1.10 Testing whether a Slot can be Accessed Directly..........ccccceerveenieenennnee. 227
12.16.1.11 Message-handler EXiSteNnce.........cccvevvieeiiieeiiieeieecieeeeiee e eevee e 227
12.16.1.12 Determining if a Class can have Direct Instancescccccceceeveeeueennee. 227
12.16.1.13 Determining if a Class can Satisfy Object Patternsccccceeeveeennnennns 227
12.16.1.14 Getting the List of Superclasses for a Class.........cceeverveeneeniieenieenneennne. 228
12.16.1.15 Getting the List of Subclasses for a Class.........cccvueeevieeriiieeniiieenieeenieenns 228
12.16.1.16 Getting the List of Slots for a Class.........cceceevieriieenienieinienecreceieeee, 228
12.16.1.17 Getting the List of Message-Handlers for a Classccceeveenienneenee. 229
12.16.1.18 Getting the List of Facets for a SIot..........coceeiieriiininiiiniieciceeeee, 229
12.16.1.19 Getting the List of Source Classes for a SIot.........cccceeveenienieenienncenee. 230
12.16.1.20 Getting the Primitive Types for a SIot........ccccueeviiiiniiiiniieiniieiiee e 230
12.16.1.21 Getting the Cardinality for a SIOt..........ccovueieiiieeiiiieeieece e 231
12.16.1.22 Getting the Allowed Values for a S10t........cccceeviiiiniiiiniiiiniiiiieeiieee 231
12.16.1.23 Getting the Numeric Range for a S1ot.........ccccuveeiiiieiiiiniiiceiieeiee e 232
12.16.1.24 Getting the Default Value for a SIotcooovieviiiiniiiiniiiiiecieeeee, 232
12.16.1.25 Setting the Defaults Mode for Classes.........cccueeevveeeiiieeniiieenieecnvee e 233
12.16.1.26 Getting the Defaults Mode for Classescceevveeeriieeniiieiniieennieennieenns 233
12.16.1.27 Getting the Allowed Values for a S10t........ccccuveeviieeiieeniieeriieceiee e 233
12.16.2 Message-handler FUNCHONSc.eeiviiiiiiiiiiiieeiieeciteeeiteeeee et 234
12.16.2.1 Existence of Shadowed Handlers...........cccceeueiiiiniiiniiiiiiinieeciceceee, 234
12.16.2.2 Calling Shadowed Handlers...........cccooviieiiiiiiiiiiiiiiieerieeeiee e 234
12.16.2.3 Calling Shadowed Handlers with Different Arguments...........ccccceeeneeenn. 235
12.16.3 Definstances FUNCHONScocueiriiiriiiriierieeiieeieeieeseee et 235
12.16.3.1 Getting the List of DefinStancesccceevveeeriieeiieeeiieeeiie e eevee e 235
12.16.3.2 Determining the Module in which a Definstances is Defined.................... 236
12.16.4 Instance Manipulation Functions and ACtions..........c.cceccveeeviveeriieeeniieeenieeseneene 236
12.16.4.1 Initializing an INStANCE.........coovuieiiiiiiiieeiee et 236
12.16.4.2 Deleting an INStANCEe.........cccveeriiieeiiiieeiiieerteeetee et e eieeesereeesreeesnveeenaneeens 236
12.16.4.3 Deleting the Active Instance from a Handlerc.cccocceeniiniiininncnne. 237
12.16.4.4 Determining the Class of an ObJECt........cccvuiieiiieeiieeeiieeriee e 237
12.16.4.5 Determining the Name of an Instancecccceeveenieriiinicnieeniceieeee. 237
12.16.4.6 Determining the Address of an InStance..........cccoeevveeeeiveerciieeniieeeniee e 238
12.16.4.7 Converting a Symbol to an Instance-Nameccceceeeceenienieenienneennee. 238
12.16.4.8 Converting an Instance-Name to a Symbolccccceeveeviiiiniieinieecnien. 238
12.16.4.9 Predicate FUNCHIONS......cc.covieiiiiiriieiienieeieeete et 238
12.16.4.10 Reading a S1ot ValUec...ooiuiiiiiiiiiiiiiiieeieeeeeeete et 239
12.16.4.11 Setting a SIot VAlUEcoouiiiiiiiiiiiiiieeeceeeee e 240
12.16.4.12 Multifield SIot FUNCHONSeeveiieiiiiieieieeieeeeee e 240
12.17 Defmodule FUNCHIONS........cooiiiiiiiiiiieieeeceeeeeee e s 241
12.17.1 Getting the List of Defmodules............ccccuvieiiiiiiiiiiiiieceeeeece e 242
12.17.2 Setting the Current Module............cooouiiiiiiiiiiiiiiieeicceceeete e 242
12.17.3 Getting the Current ModUle...........coooiiiiiiiiiiieeieeeeeee et 242
12.18 SequENCe EXPANSIONeieiiiiiiiiiiniieiiite ettt ettt ite e sete sttt e st esaeeesaeeeens 242

X Table of Contents

CLIPS Reference Manual

12.18.1 Sequence Expansion and RuUlescccceiiiiiiiiiiiiiiieniieiieeteciee e 244
12.18.2 Multifield Expansion FUNCHONcceeiiiiiiiiieiiie et 244
12.18.3 Setting The Sequence Operator Recognition Behaviorccocccevveeeiiinncnneen, 245
12.18.4 Getting The Sequence Operator Recognition Behavior...........cccceevcvevenieennnennne 245
12.18.5 Sequence OPerator CAVEAL.........cc.eeervieerieieiiieerieeeiteesiteesiteesreeesibeessareesnaeeeas 245
Section 13 - Commands 247
13.1 Environment COMMANGSccooueriiiiniiiiienieeiieeteesiee ettt e sree e 247
13.1.1 Loading Constructs From A Fileccccoooiiiiiiiiiiieeieeceeeeceee e 247
13.1.2 Loading Constructs From A File without Progress Information.............c...c....... 247
13.1.3 Saving All Constructs TO A File.......cccoieiiiiiiiiieiieceeceeee e 247
13.1.4 Loading a Binary IMage..........ccccoviuiiiriiiiiiiiiiieeieeeieeeeeeeete et 248
13.1.5 Saving a Binary IMage........ccoecuiiiiiiiiiiieeiieeeee ettt 248
13.1.6 Clearing CLIPSoo ittt ettt st e s eas 249
13.1.7 EXiting CLIPS ...ttt ettt 249
13.1.8 Resetting CLIPS ..ottt ettt s 249
13.1.9 Executing Commands From a Filecccccooiiiiiiiiiiicceces 250
13.1.10 Executing Commands From a File Without Replacing Standard Input 250
13.1.11 Determining CLIPS Compilation Options..........ccceevveeeeiieeeiiieeniieeesieeenreesnneeens 250
13.1.12 Calling the Operating SYStEIM........ccccvteerieeeriieeiieeeieeeeieeesiteesreeesbeessireesiaeeeas 251
13.1.13 Setting The Auto-Float Dividend Behavior...........cccceeeiiieniiieniieeniieciee e 251
13.1.14 Getting The Auto-Float Dividend Behavior..........ccoccceviiiiiiiniiniiinicniiiicnens 251
13.1.15 Setting the Dynamic Constraint Checking Behavior...........cccccecvveeviieincieeinnene 252
13.1.16 Getting the Dynamic Constraint Checking Behaviorccccccoceeviiiiiincnnen, 252
13.1.17 Setting the Static Constraint Checking Behavior...........ccccoeevieviiiiniieinieecene 252
13.1.18 Getting the Static Constraint Checking Behavior...........cccccoviiiiiniiniiininnen, 252
13.1.19 FINding SYMDOLS ...c..eeiiiiiiiiiiieeiieeeee ettt s 252
13.2 Debug@ing COMMANAS.......cccueiriuiiiiiieiiiieeriee ettt et et eesite e st e e sibeessabeesareesnaneeens 253
13.2.1 Generating Trace FIles......ccciviiiiiiiiiiiiiieiie ettt e 253
13.2.2 Closing Trace FILES ...cc..eeiiiiiiiiiiiiiiieiieeee ettt 253
13.2.3 Enabling WatCh IteImMS......cc.eiiviiiiiiiiiecie ettt e 253
13.2.4 Disabling WatCh TtemiS.........covuiiiiiiiiiiiiiiiceee et 255
13.2.5 Viewing the Current State of Watch Items..........ccceeeviieeiiieiciiiiieceee e, 255
13.3 Deftemplate COMMEANGS.........ceeriuiiiriiieiiiieeiie ettt ettt st eseareessieeeeas 256
13.3.1 Displaying the Text of a Deftemplate...........cccveeviiieiiieiiiieeieeceeeeee e 256
13.3.2 Displaying the List of Deftemplatescoooueiiiiiiiiiiiiiiiiieieeeeee e, 256
13.3.3 Deleting a Deftemplatecccueeeiiiiiiieeiieciee e e e 257
13.4 Fact COMMEANScoouviriiiiiiiiterie ettt sttt et e sbee e e snee e 257
13.4.1 Displaying the Fact-LiSt........ccccviriiiiriieeiiieeciee ettt eaaee e 257
13.4.2 Loading Facts From @ Filecccccoiiiiiiiiiiiiiiieeeeeete e 257
13.4.3 Saving The Fact-List TO A Filec.ccoooiiiiiiiieiieeeeceeceeee et 258
13.4.4 Setting the Duplication Behavior of Facts.........ccccccovviiiiiiiiniiiiniiiieiieceeeee 258
13.4.5 Getting the Duplication Behavior of Factscccccooiiiiiiiiiiiiiiiiiiieices 259

CLIPS Basic Programming Guide Xi

CLIPS Reference Manual

13.4.6 Displaying a Single Fact...........ccoooiiiiiiiiiiiiiiieeceeeeeteeee e 259
13.5 Deffacts COMMANAS.......coiiiiiiiiiiiieeteete ettt sttt st 260
13.5.1 Displaying the Text of @ Deffacts.........ccoociiiiiiiiiiiiiiiiecee e 260
13.5.2 Displaying the List of DeffactS.........ccccuveioiiiiiiiiiiiieeeeceeeeeeee e 260
13.5.3 Deleting @ DEeffactseevueeiiiiiiiiiiiriieeiec ettt 260
13.6 Defrule COmMMANASc...oiiiiiiiiiieiieeeete ettt st st 261
13.6.1 Displaying the Text of @ RUIEcoooiiiiiiiiiiiiiiiiieeeeee e 261
13.6.2 Displaying the List Of RUIESccccvieiiiiiiiiiiciiececceeceeee e 261
13.6.3 Deleting @ DefTule..........ooviiiiiiiiiiiieiiieeie ettt s 261
13.6.4 Displaying Matches for @ RUleccooeiiiieiiiiiiiiiciccceece e 261
13.6.5 Setting a Breakpoint for a Rule.............cooouiiiiiiiiiiiiiiiiiectecee e 263
13.6.6 Removing a Breakpoint for a Ruleccccoevvuiiiiiiieiiiecieceeeeee e 264
13.6.7 Displaying Rule Breakpointsccccueeiriiiiiiieiiiieiiieeniieeeitecsite et 264
13.6.8 Refreshing @ RUIC...........oooiiiiiiiiiiiiccee ettt e 264
13.6.9 Setting the Incremental Reset Behavior..........ccoovveeiiiiiiiiiniiiiniiieeeiee e, 264
13.6.10 Getting the Incremental Reset Behavior...........cccveeiiieiiiiiniiiecieeieeee e 265
13.6.11 Determining the Logical Dependencies of a Pattern Entity..........ccccccecveevnenneens 265
13.6.12 Determining the Logical Dependents of a Pattern Entitycccccecvveenveennnenn. 265
13.7 Agenda COmMMANGS........c.ueeriiiiiiiiiiniieerite ettt ettt eb e st e e st e ssaaeesabeesaeeeens 266
13.7.1 Displaying the AZenda..........ccccueeeiuiieiiiieeiiieeeiee et e et e eveeeaeeesreeesreeesereesaaeeens 266
13.7.2 RUNning CLIPSoiiiiiie ettt ettt s eas 266
13.7.3 Focusing on a Group Of RUIEScoccviiiiiiiiiiiiciieceeceeeee et 266
13.7.4 Stopping Rule EXECULIONcccuiiiiiiiiiiieiiiceieeeete ettt 267
13.7.5 Setting The Current Conflict Resolution Strategy.........ccccceeevveeriiieenieeeniieeenneenne 267
13.7.6 Getting The Current Conflict Resolution Strategycccevvveeriiiiniieernieennneenne 267
13.7.7 Listing the Module Names on the Focus Stackcceccvevviiiniieiniieiniee e, 267
13.7.8 Removing all Module Names from the Focus Stackccccooceriiiniiniiincnnen, 268
13.7.9 Setting the Salience Evaluation Behavior............cocccooiiiiiiiiniiiiiiieices 268
13.7.10 Getting the Salience Evaluation Behavior.........cc.cccoceeiiiiiiiiiiniiiniciiicicnes 268
13.7.11 Refreshing the Salience Value of Rules on the Agenda..........cccceevveeenveernnennne 268
13.8 Defglobal ComMmMANndScccueeriuiiiiiiiiiiiieeiie ettt sttt e s esaeee e 269
13.8.1 Displaying the Text of a Defglobal.............ccccoiiiiiiiiiics 269
13.8.2 Displaying the List of Defglobals..........cccccooiiiiiiiiiiiiiiieeeee 269
13.8.3 Deleting a Defglobalcooiiiiiiiiii et 269
13.8.4 Displaying the Values of Global Variablescccccoceeviiiiiiniiniiiniiniicnicnens 269
13.8.5 Setting the Reset Behavior of Global Variables...........cccccceeeviiercieincieenieeciene 270
13.8.6 Getting the Reset Behavior of Global Variables...........cccccceevviiiniiiiniieiniiennien. 270
13.9 Deffunction COmMMANAS........c.ceiiiiiiiiriieiienieeit ettt sttt 270
13.9.1 Displaying the Text of a Deffunctionccccovvuiiiiiiiiiiiiniiiecceeeee 270
13.9.2 Displaying the List of Deffunctions............cccceeeeiriiiiiiiiiiiiiieeeeeeeecees 270
13.9.3 Deleting @ DeffunCtion.........coocuueiiiiiiiiieiieeeiee ettt 271
13.10 Generic Function CoOmMmAandsccc.eerieriiiiieniieiienie ettt s 271
13.10.1 Displaying the Text of a Generic Function Headerccccevveinieniiincnnnen, 271

Xii Table of Contents

CLIPS Reference Manual

13.10.2 Displaying the Text of a Generic Function Methodcoccvieinieniiincnnnen, 271
13.10.3 Displaying the List of Generic FUNCLIONScccuveeriiieiiiieniieeeiie e 271
13.10.4 Displaying the List of Methods for a Generic Functionccccceevveeieinnenneens 272
13.10.5 Deleting a Generic FUNCHONc..cocciiiiiiiieiiee et e 272
13.10.6 Deleting a Generic Function Method............cccoooiiiiiiiiiiiniiiieeeciee e, 272
13.10.7 Previewing a Generic Function Call...........ccccoeeviiiiiiiiiiiiinieceeceee e 273
13.11 CLIPS Object-Oriented Language (COOL) Commands..........cceecueeerieeinieennieennneenns 273
13.11.1 Class COMMEANGS.......ceruutiriierieiiieeieete ettt ettt et e st e et eesbeesbeesaeeens 273
13.11.1.1 Displaying the Text of @ Defclass..........cooveriiiniiniiinicniiinieneceeeeeee, 273
13.11.1.2 Displaying the List of Defclassescccceevuiieiiiieiieeeiiierieceiee e 274
13.11.1.3 Deleting @ DefClassoovueeiriieiniiiiiieeieeeieeeeeeeee et 274
13.11.1.4 EXamining @ CIaSS......ccccueeriuiieriiieeiiieerieeerteeesteesseeesaeeeseveeesveesnsveeennneeens 274
13.11.1.5 Examining the Class Hierarchyc.ccoooiiiiiiiiiiiiniiiieicecce e 276
13.11.2 Message-handler COmMmMANdS..........cccuvieriiieriieeiiieeieecie e ereeesveeesereeesaaeeens 277
13.11.2.1 Displaying the Text of a Defmessage-handler.............ccccovieriiiniinnennee. 277
13.11.2.2 Displaying the List of Defmessage-handlers...........ccccceeveiieenciveeniieeennenns 277
13.11.2.3 Deleting a Defmessage-handler.............ccocceeviiiiniiiiniiiiniiiiiieciee e 278
13.11.2.4 Previewing @ MESSAZE......ccccueeruieeriiieerieeerieeenteeeseeesaeeesseesssseesssseesssseenns 278
13.11.3 Definstances COmMmMmAandS.........c.ceeeueeruieriieniienieenieneeee et esiee e sareens 279
13.11.3.1 Displaying the Text of a Definstances...........ccecceerveerieiieinieniieenieeeeee, 279
13.11.3.2 Displaying the List of Definstances...........ccecceevverieenierieeneenieeneeeieeee. 279
13.11.3.3 Deleting @ DefinStancescccveercvieeriieeniieeieeeeeeeieeesieeesveeesevee e ens 280
13.11.4 Instances COMMANGScooueeriiiriiiiiienieeiieeee ettt sreens 280
13.11.4.1 Listing the INSTANCES ...c..eeeviiiieriieeiiieeiieeerieeeeeeeeeeeeaeeesveeesreeesnveeenaneeens 280
13.11.4.2 Printing an Instance’s Slots from a Handler............ccccccooeininiiininnnnnne. 281
13.11.4.3 Saving Instances to a Text Filecccccvveviiiiiiiiiiiiecieceeeeee e 281
13.11.4.4 Saving Instances to a Binary File.........ccoccooiiiiniiiniieceeeee, 282
13.11.4.5 Loading Instances from a Text Fileccccceeviiiiiiiieiiiinieeeee e 282
13.11.4.6 Loading Instances from a Text File without Message Passing.................. 282
13.11.4.7 Loading Instances from a Binary File........c.ccccccvvviiiniiiiniiiiieee e, 282

13.12 Defmodule COmMMANASc.cooviiiiiiiriiiiienieeieeeeeee et 283
13.12.1 Displaying the Text of a Defmodule...........ccceeeviiieiiiiiiiiieieeceeceee e 283
13.12.2 Displaying the List of Defmodules...........ccccveeieiriiniiiniiiiiiiciececeececnens 283
13.13 Memory Management COmMMAaNAS...........ccoeruiieeiriiiiieeeniiieeeeriieeeeeieeeeesiireeeesaeeeeeenas 283
13.13.1 Determining the Amount of Memory Used by CLIPScccccoiiiiiiiiiinnniene 283
13.13.2 Determining the Number of Memory Requests Made by CLIPS....................... 283
13.13.3 Releasing Memory Used by CLIPS.......c..coiiiiiiiiiiiieeieeeeete e 284
13.13.4 CoNSErVING MEMOTYcceouiiiiiiieeiieeeiieesteeesteeesteeeereesseeesseeessseeessseeensseesnsseenns 284
13.14 On-Line Help SYSTEIM . ..ciiiiiiiiiiiiiieeie ettt ettt st 284
13.14.1 Using the CLIPS Help Facilitycooceiiiiiiiiiiiiiieieieeeeeeete e, 284
13.14.2 Finding the Help Filec.cooiiiiiiiiiieeete et 285
13.15 External Text Manipulation...........cceeecuiieiiiieeniiieerieecieeeieesieeesieeesveeeseveeeseveesnnneeens 286
13.15.1 External Text File FOrmat............ccccoooiiriiiiiiiniiiiececeeeeeecee e 286

CLIPS Basic Programming Guide xiii

CLIPS Reference Manual

13.15.2 External Text Manipulation FUNCHONSc.ccocuieriiniiiiniiiiiiicniececeeeeceens 288

I3.15. 2.1 FeCRccc ittt e e e et e e v e e eareeeeaaeeens 288

13.15.2.2 PrINE-TEZION ...eeiuviieiiiiieeiteeeite ettt ettt ettt et e st e et esareesineeens 288

13.15.2.3 GO-TEZION ...veeeeiieeiieeeiteeeteeeeteeeeteeeseteeessaeeesaeeesaeeesseeessseesnsseeensseeensseenns 290

LG T B T o USRS 290

13.16 Profiling COMMANAScc.eeiiuiiiiiiiieeiieeite ettt st 290
13.16.1 Setting the Profiling Report Threshold..........cccccooiiiiiiiiiiiniiiceeeces 290
13.16.2 Getting the Profiling Report Threshold ..o, 291
13.16.3 Resetting Profiling Information............c.cccevveriiiiiiniiiniiiiiceceeeeec s 291
13.16.4 Displaying Profiling Information..............ccccoeeiiiiiniiiiiiiiceeeecees 291
13.16.5 Profiling Constructs and User FUNCHONSccccovviriiiiiiiiiiiiniinieciceieeieceeens 291
Appendix A - Support Information 295
A.1 Questions and INfOrmMation..........cccvvveiiieiiiiiiiiiieieee e e eeeerrereee e 295
AL2 CLIPS LISt SEIVET ...vviiiiiiiieeeeiiee e ettt e ettt e e e et e e e et e e e eeataeeeeeasseeeesassaaeeeeasseeeeesseeaeanns 295
A.3 CLIPS Developers’ FOTUML........cooiiiiiiiiiiiiieiiieeeiieeeite ettt sttt 296
A4 DOCUMENTATIONuvviieieiiiiee ettt e e eeiee e e et e e e ettt eeeesaaeeeeeeaseeeeeessseeeasassesaeanasseeseessseeaanes 296
A.5 CLIPS Source Code and EXecutablescccccuiieieiiiiiieeiiiieeccieeeeeeveeeeeveee e eeaeee e 296
Appendix B - Update Release Notes 297
BT VEISION 6.24 ...ttt e e e e e e et e e e essebaee e e nsseeeesnsaeeeesnsseeaaanes 297
B.2 VEISION 6.23 ...ooiiiiiiii ettt e e e e e et e e e ettt e e e e eabe e e e e anaeeeeeearaeeeeensraeaeanns 299
B.3 VEISION 6.22ooiieiiiie ettt e e e st e e e st e e e e eaebsae e e nnaeaeesnsaaeeennsneaaaanns 300
B4 VErSION 0.21 ..ottt et e e e e et e et e et e et e e eateeeetaeeearens 300
B.5 VEISION 6.2 ...ttt ettt e e et e e e et e e e e e aebsee e e asaeeeeensaeeeesnssnaaaanns 301
B.O VEISION 6.1 ..o ettt e e e et e e e e et e e e e e ataeaeesaraeeeeennraaeeanns 303
B.7 VEISION 6.05ooiiiiiiieeiiee ettt ete e ettt e e e s te e e e s iba e e e e sssbaee e s anaeaeesnsaaeeesnsneaeaanns 304
B.8 VErSION 0.04 ...ttt e et e e et e et e et e et e e e eareeeeateeeareas 307
B.O VErsion 6.03coooiiiiieiiiee ettt e ettt e e e s e e e s e e e e e e ttr e e e e raeaeeenraaeeeennraaeaanns 308
B.10 VErsion 6.02cc.uuviiiiiiiiee ettt ettt e e et e e e et e e e e eaba e e e e taeae e e araaeeeenraeeeanns 309
B.11 Version 6.01 ...ccocueeiiiiiiiiee ettt ettt e e et e e e et e e e esebaeeeesasseaeesnsaaeeesnsseeaaanes 311
Appendix C - Glossary 313
Appendix D - Integrated Editor 321
D.1 SPeCial ChAaTaCLETS. .. .cccuviieiiiieeiie ettt ettt te e e tee e e te e e st e e ssbeeesnbee e saeeesseeesseesnnnens 321
D.2 Control COMMANASccccuviiieieiiiieeeeiiieeeeeiieeeeeieeeeesreeeeesraeeeessbeeeeessseeeessssseeesssssneaaanes 322
D.3 Extended (Control-X) COmMMANGSccooevvurrrieeieeeiiiiiiereeeeeeeeeeerarereeeeeeeeesnsnnnreeeeeeens 323
D.4 Meta Commands (Activated by <esc> or <Ctrl-[>)......cooccviviiiiniiiiniiiiiieieeieeee, 324
Appendix E - Performance Considerations 325
E.1 Ordering of Patterns on the LHScccoiiiiiiiiiieee e 325
E.2 Deffunctions versus Generic FUNCHONS.cccueiiiiiiiiiieiiiec et 326
E.3 Ordering of Method Parameter RestriCtions..........cc.covveriieenieniienieniececeicesee e 327

X1V

Table of Contents

CLIPS Reference Manual

E.4 Instance-Addresses versus INStance-INAMESvuuuueeiereeiiiieiieeeeeeeeetteieeeeeeeeeresaaees
E.5 Reading Instance S10ts DIr€Ctlycccvieviieeiiiieiiieeieecee et

Appendix F - CLIPS Warning Messages

329

331

Appendix G - CLIPS Error Messages

Appendix H - CLIPS BNF

369

Appendix I - Reserved Function Names

377

383

Appendix J - Bibliography of CLIPS Publications

Index

391

CLIPS Basic Programming Guide

XV

CLIPS Reference Manual

License Information

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

CLIPS is released as public domain software and as such you are under no obligation to pay for
its use. However, if you derive commercial or monetary benefit from use of the software or just
want to show support, please consider making a voluntary payment based on the worth of the
software to you as compensation for the time and effort required to develop and maintain CLIPS.
Payments can be made online at http://order.kagi.com/?JKT.

CLIPS Basic Programming Guide i

CLIPS Reference Manual

Preface

The History of CLIPS

The origins of the C Language Integrated Production System (CLIPS) date back to 1984 at
NASA’s Johnson Space Center. At this time, the Artificial Intelligence Section had developed
over a dozen prototype expert systems applications using state-of-the-art hardware and software.
However, despite extensive demonstrations of the potential of expert systems, few of these
applications were put into regular use. This failure to provide expert systems technology within
NASA’s operational computing constraints could largely be traced to the use of LISP as the base
language for nearly all expert system software tools at that time. In particular, three problems
hindered the use of LISP based expert system tools within NASA: the low availability of LISP
on a wide variety of conventional computers, the high cost of state-of-the-art LISP tools and
hardware, and the poor integration of LISP with other languages (making embedded applications
difficult).

The Artificial Intelligence Section felt that the use of a conventional language, such as C, would
eliminate most of these problems, and initially looked to the expert system tool vendors to
provide an expert system tool written using a conventional language. Although a number of tool
vendors started converting their tools to run in C, the cost of each tool was still very high, most
were restricted to a small variety of computers, and the projected availability times were
discouraging. To meet all of its needs in a timely and cost effective manner, it became evident
that the Artificial Intelligence Section would have to develop its own C based expert system tool.

The prototype version of CLIPS was developed in the spring of 1985 in a little over two months.
Particular attention was given to making the tool compatible with expert systems under
development at that time by the Artificial Intelligence Section. Thus, the syntax of CLIPS was
made to very closely resemble the syntax of a subset of the ART expert system tool developed
by Inference Corporation. Although originally modelled from ART, CLIPS was developed
entirely without assistance from Inference or access to the ART source code.

The original intent for CLIPS was to gain useful insight and knowledge about the construction of
expert system tools and to lay the groundwork for the construction of a replacement tool for the
commercial tools currently being used. Version 1.0 demonstrated the feasibility of the project
concept. After additional development, it became apparent that CLIPS would be a low cost
expert system tool ideal for the purposes of training. Another year of development and internal
use went into CLIPS improving its portability, performance, functionality, and supporting
documentation. Version 3.0 of CLIPS was made available to groups outside of NASA in the
summer of 1986.

Further enhancements transformed CLIPS from a training tool into a tool useful for the
development and delivery of expert systems as well. Versions 4.0 and 4.1 of CLIPS, released

CLIPS Basic Programming Guide iii

CLIPS Reference Manual

respectively in the summer and fall of 1987, featured greatly improved performance, external
language integration, and delivery capabilities. Version 4.2 of CLIPS, released in the summer of
1988, was a complete rewrite of CLIPS for code modularity. Also included with this release
were an architecture manual providing a detailed description of the CLIPS software architecture
and a utility program for aiding in the verification and validation of rule-based programs.
Version 4.3 of CLIPS, released in the summer of 1989, added still more functionality.

Originally, the primary representation methodology in CLIPS was a forward chaining rule lan-
guage based on the Rete algorithm (hence the Production System part of the CLIPS acronym).
Version 5.0 of CLIPS, released in the spring of 1991, introduced two new programming
paradigms: procedural programming (as found in languages such as C and Ada) and
object-oriented programming (as found in languages such as the Common Lisp Object System
and Smalltalk). The object-oriented programming language provided within CLIPS is called the
CLIPS Object-Oriented Language (COOL). Version 5.1 of CLIPS, released in the fall of 1991,
was primarily a software maintenance upgrade required to support the newly developed and/or
enhanced X Window, MS-DOS, and Macintosh interfaces. Version 6.0 of CLIPS, released in
1993, provided support for the development of modular programs and tight integration between
the object-oriented and rule-based programming capabilities of CLIPS. Version 6.1 of CLIPS,
released in 1998, removed support for older non-ANSI C Compilers and added support for C++
compilers. Commands to profile the time spent in constructs and user-defined functions were
also added.

CLIPS is now maintained independently from NASA as public domain software.

Because of its portability, extensibility, capabilities, and low-cost, CLIPS has received
widespread acceptance throughout the government, industry, and academia. The development of
CLIPS has helped to improve the ability to deliver expert system technology throughout the
public and private sectors for a wide range of applications and diverse computing environments.
See appendix A of the Basic Programming Guide for information on obtaining CLIPS and
support.

CLIPS Version 6.2

Version 6.2 of CLIPS contains two major enhancements. First, CLIPS now provides a
mechanism which allows an embedded application to create multiple environments into which
programs can be loaded. Second, an improved Windows 2000/XP CLIPS interface is now
available and the Macintosh CLIPS interface has been enhanced to support MacOS X. For a
detailed listing of differences between the 6.x releases of CLIPS, refer to appendix B of the Basic
Programming Guide and appendix C of the Advanced Programming Guide.

W Preface

CLIPS Reference Manual

CLIPS Documentation
Two documents are provided with CLIPS.
e The CLIPS Reference Manual which is split into the following parts:

e Volume I - The Basic Programming Guide, which provides the definitive description of
CLIPS syntax and examples of usage.

e Volume II - The Advanced Programming Guide, which provides detailed discussions of
the more sophisticated features in CLIPS and is intended for people with extensive
programming experience who are using CLIPS for advanced applications.

e Volume III - The Interfaces Guide, which provides information on machine-specific
interfaces.

e The CLIPS User’s Guide which provides an introduction to CLIPS rule-based and
object-oriented programming and is intended for people with little or no expert system
experience.

CLIPS Basic Programming Guide v

CLIPS Reference Manual

Acknowledgements

As with any large project, CLIPS is the result of the efforts of numerous people. The primary
contributors have been: Robert Savely, who conceived the project and provided overall direction
and support; Chris Culbert, who managed the project and wrote the original CLIPS Reference
Manual; Gary Riley, who designed and developed the rule-based portion of CLIPS, co-authored
the CLIPS Reference Manual, and developed the Macintosh interface for CLIPS; Brian Donnell,
who designed and developed the CLIPS Object Oriented Language (COOL) and co-authored the
CLIPS Reference Manual; Bebe Ly, who developed the X Window interface for CLIPS; Chris
Ortiz, who developed the original Windows 95 interface for CLIPS; Dr. Joseph Giarratano of the
University of Houston-Clear Lake, who wrote the CLIPS User’s Guide; and Frank Lopez, who
designed and developed CLIPS version 1.0 and wrote the CLIPS 1.0 User’s Guide.

Many other individuals contributed to the design, development, review, and general support of
CLIPS, including: Jack Aldridge, Carla Armstrong, Paul Baffes, Ann Baker, Stephen
Baudendistel, Les Berke, Tom Blinn, Marlon Boarnet, Dan Bochsler, Bob Brown, Barry
Cameron, Tim Cleghorn, Major Paul Condit, Major Steve Cross, Andy Cunningham, Dan
Danley, Mark Engelberg, Kirt Fields, Ken Freeman, Kevin Greiner, Ervin Grice, Sharon Hecht,
Patti Herrick, Mark Hoffman, Grace Hua, Gordon Johnson, Phillip Johnston, Sam Juliano, Ed
Lineberry, Bowen Loftin, Linda Martin, Daniel McCoy, Terry McGregor, Becky McGuire, Scott
Meadows, C. J. Melebeck, Paul Mitchell, Steve Mueller, Bill Paseman, Cynthia Rathjen, Eric
Raymond, Reza Razavipour, Marsha Renals, Monica Rua, Tim Saito, Michael Sullivan, Gregg
Swietek, Eric Taylor, James Villarreal, Lui Wang, Bob Way, Jim Wescott, Charlie Wheeler, and
Wes White.

CLIPS Basic Programming Guide vii

CLIPS Reference Manual

Section 1 - Introduction

This manual is the Basic Programming Guide for CLIPS. It is intended for users interested in the
syntax of CLIPS. No previous expert system background is required, although a general
understanding of computer languages is assumed. Section 2 of this manual provides an overview
of the CLIPS language and basic terminology. Sections 3 through 11 provide additional details
regarding the CLIPS programming language on topics such as rules and the CLIPS Object
Oriented Programming Language (COOL). The types of actions and functions provided by
CLIPS are defined in section 12. Finally, commands typically used from the CLIPS interactive
interface are described in section 13.

The Basic Programming Guide documents just the basic CLIPS syntax. More advanced
capabilities, such as user-defined functions, embedded applications, etc., are documented more
fully in the Advanced Programming Guide. The Advanced Programming Guide is intended for
users who have a complete knowledge of the CLIPS syntax and a programming background. It is
not necessary to read the Advanced Programming Guide to learn how to use CLIPS. CLIPS can
be learned and simple expert systems can be built with the information provided in this manual.

CLIPS Basic Programming Guide 1

CLIPS Reference Manual

Section 2 - CLIPS Overview

This section gives a general overview of CLIPS and of the basic concepts used throughout this
manual.

2.1 INTERACTING WITH CLIPS

CLIPS expert systems may be executed in three ways: interactively using a simple, text-oriented,
command prompt interface; interactively using a window/menu/mouse interface on certain ma-
chines; or as embedded expert systems in which the user provides a main program and controls
execution of the expert system. Embedded applications are discussed in the Advanced
Programming Guide. In addition, a series of commands can be automatically read directly from a
file when CLIPS is first started or as the result of the batch command.

The generic CLIPS interface is a simple, interactive, text-oriented, command prompt interface
for high portability. The standard usage is to create or edit a knowledge base using any standard
text editor, save the knowledge base as one or more text files, exit the editor and execute CLIPS,
then load the knowledge base into CLIPS. The interface provides commands for viewing the
current state of the system, tracing execution, adding or removing information, and clearing
CLIPS.

A more sophisticated window interface is available for the Macintosh, Windows 3.1, and X
Window environments. All interface commands described in this section are available in the
window interfaces. These interfaces are described in more detail in the Interfaces Guide.

2.1.1 Top Level Commands

The primary method for interacting with CLIPS in a non-embedded environment is through the
CLIPS command prompt (or top level). When the “CLIPS>" prompt is printed, a command
may be entered for evaluation. Commands may be function calls, constructs, global variables, or
constants. If a function call is entered (see section 2.3.2), that function is evaluated and its return
value is printed. Function calls in CLIPS use a prefix notation—the operands to a function
always appear after the function name. Entering a construct definition (see section 2.3.3) at the
CLIPS prompt creates a new construct of the appropriate type. Entering a global variable (see
section 2.4.3) causes the value of the global variable to be printed. Entering a constant (see
section 2.3.1) at the top level causes the constant to be printed (which is not very useful). For
example,

CLIPS (V6.0 05/12/93)
CLIPS> (+ 3 4)
7
CLIPS> (defglobal ?*x* = 3)
CLIPS> 7%*x*

CLIPS Basic Programming Guide 3

CLIPS Reference Manual

3

CLIPS> red
red

CLIPS>

The previous example first called the addition function adding the numbers 3 and 4 to yield the
result 7. A global variable 7*x* was then defined and given the value 3. The variable 7*x* was
then entered at the prompt and its value of 3 was returned. Finally the constant symbol red was
entered and was returned (since a constant evaluates to itself).

2.1.2 Automated Command Entry and Loading

Some operating systems allow additional arguments to be specified to a program when it begins
execution. When the CLIPS executable is started under such an operating system, CLIPS can be
made to automatically execute a series of commands read directly from a file or to load
constructs from a file. The command-line syntax for starting CLIPS and automatically reading
commands or loading constructs from a file is as follows:

Syntax
clips <option>*

<option> ::= -f <filename> |
-f2 <filename> |
-1 <filename>

For the -f option, <filename> is a file that contains CLIPS commands. If the exit command is
included in the file, CLIPS will halt and the user is returned to the operating system after
executing the commands in the file. If an exit command is not in the file, CLIPS will enter in its
interactive state after executing the commands in the file. Commands in the file should be
entered exactly as they would be interactively (i.e. opening and closing parentheses must be
included and a carriage return must be at the end of the command). The -f command line option
is equivalent to interactively entering a batch command as the first command to the CLIPS
prompt.

The -f2 option is similar to the -f option, but is equivalent to interactively entering a batch*
command. The commands stored in <filename> are immediately executed, but the commands
and their return values are not displayed as they would be for a batch command.

For the -1 option, <filename> should be a file containing CLIPS constructs. This file will be

loaded into the environment. The -1 command line option is equivalent to interactively entering a
load command.

4 Section 2 - CLIPS Overview

CLIPS Reference Manual

2.1.3 Integration with Other Languages

When using an expert system, two kinds of integration are important: embedding CLIPS in other
systems, and calling external functions from CLIPS. CLIPS was designed to allow both kinds of
integration.

Using CLIPS as an embedded application allows the easy integration of CLIPS with existing
systems. This is useful in cases where the expert system is a small part of a larger task or needs
to share data with other functions. In these situations, CLIPS can be called as a subroutine and
information may be passed to and from CLIPS. Embedded applications are discussed in the
Advanced Programming Guide.

It also may be useful to call external functions while executing a CLIPS construct or from the
top-level of the interactive interface. CLIPS variables or literal values may be passed to an
external function, and functions may return values to CLIPS. The easy addition of external
functions allows CLIPS to be extended or customized in almost any way. The Advanced
Programming Guide describes how to integrate CLIPS with functions or systems written in C as
well as in other languages.

2.2 REFERENCE MANUAL SYNTAX

The terminology used throughout this manual to describe the CLIPS syntax is fairly common to
computer reference manuals. Plain words or characters, particularly parentheses, are to be typed
exactly as they appear. Bolded words or characters, however, represent a verbal description of
what is to be entered. Sequences of words enclosed in single-angle brackets (called terms or
non-terminal symbols), such as <string>, represent a single entity of the named class of items to
be supplied by the user. A non-terminal symbol followed by a *, represents zero or more entities
of the named class of items which must be supplied by the user. A non-terminal symbol followed
by a +, represents one or more entities of the named class of items which must be supplied by the
user. A * or + by itself is to be typed as it appears. Vertical and horizontal ellipsis (three dots
arranged respectively vertically and horizontally) are also used between non-terminal symbols to
indicate the occurrence of one or more entities. A term enclosed within square brackets, such as
[<comment>], is optional (i.e. it may or may not be included). Vertical bars indicate a choice
between multiple terms. White spaces (tabs, spaces, carriage returns) are used by CLIPS only as
delimiters between terms and are ignored otherwise (unless inside double quotes). The ::=
symbol is used to indicate how a non-terminal symbol can be replaced. For example, the
following syntax description indicates that a <lexeme> can be replaced with either a <symbol>
or a <string>.

<lexeme> ::= <symbol> | <string>

A complete BNF listing for CLIPS constructs along with some commonly used replacements for
non-terminal symbols are listed in appendix I.

CLIPS Basic Programming Guide 5

CLIPS Reference Manual

2.3 BASIC PROGRAMMING ELEMENTS

CLIPS provides three basic elements for writing programs: primitive data types, functions for
manipulating data, and constructs for adding to a knowledge base.

2.3.1 Data Types

CLIPS provides eight primitive data types for representing information. These types are float,
integer, symbol, string, external-address, fact-address, instance-name and instance-address.
Numeric information can be represented using floats and integers. Symbolic information can be
represented using symbols and strings.

A number consists only of digits (0-9), a decimal point (.), a sign (+ or -), and, optionally, an (e)
for exponential notation with its corresponding sign. A number is either stored as a float or an
integer. Any number consisting of an optional sign followed by only digits is stored as an
integer (represented internally by CLIPS as a C long integer). All other numbers are stored as
floats (represented internally by CLIPS as a C double-precision float). The number of significant
digits will depend on the machine implementation. Roundoff errors also may occur, again
depending on the machine implementation. As with any computer language, care should be taken
when comparing floating-point values to each other or comparing integers to floating-point
values. Some examples of integers are

237 15 +12 -32

Some examples of floats are

237e3 15.09 +12.0 -32.3e-7

Specifically, integers use the following format:

<integer> ::= [+ | -] <digit>+
<digit> ::=@ 1112131415161 718129

Floating point numbers use the following format:

<float> ::= <integer> <exponent> |
<integer> . [exponent]
. <unsigned integer> [exponent]
<integer> . <unsigned integer> [exponent]
<unsigned-integer> ::= <digit>+

<exponent> ::= e | E <integer>

6 Section 2 - CLIPS Overview

CLIPS Reference Manual

A sequence of characters which does not exactly follow the format of a number is treated as a
symbol (see the next paragraph).

A symbol in CLIPS is any sequence of characters that starts with any printable ASCII character
and is followed by zero or more printable ASCII characters. When a delimiter is found, the
symbol is ended. The following characters act as delimiters: any non-printable ASCII character
(including spaces, tabs, carriage returns, and line feeds), a double quote, opening and closing
parentheses “(” and “)”, an ampersand “&”, a vertical bar “I”, a less than “<”, and a tilde “~”. A
semicolon “;” starts a CLIPS comment (see section 2.3.3) and also acts as a delimiter. Delimiters
may not be included in symbols with the exception of the “<* character which may be the first
character in a symbol. In addition, a symbol may not begin with either the “?” character or the
“$?” sequence of characters (although a symbol may contain these characters). These characters
are reserved for variables (which are discussed later in this section). CLIPS is case sensitive (i.e.
uppercase letters will match only uppercase letters). Note that numbers are a special case of
symbols (i.e. they satisfy the definition of a symbol, but they are treated as a different data type).

Some simple examples of symbols are
foo Hello B76-HI bad_value

127A 456-93-039 @+=-% 2each

A string is a set of characters that starts with a double quote (") and is followed by zero or more
printable characters. A string ends with double quotes. Double quotes may be embedded within a
string by placing a backslash (\) in front of the character. A backslash may be embedded by
placing two consecutive backslash characters in the string. Some examples are

"foo" "a and b" "1 number" "a\"quote"

Note that the string “abcd" is not the same as the symbol abcd. They both contain the same
characters, but are of different types. The same holds true for the instance name [abcd].

An external-address is the address of an external data structure returned by a function (written
in a language such as C or Ada) that has been integrated with CLIPS. This data type can only be
created by calling a function (i.e. it is not possible to specify an external-address by typing the
value). In the basic version of CLIPS (which has no user defined external functions), it is not
possible to create this data type. External-addresses are discussed in further detail in the
Advanced Programming Guide. Within CLIPS, the printed representation of an external-address
is

<Pointer-XXXXXX>

where XXXXXX is the external-address.

CLIPS Basic Programming Guide 7

CLIPS Reference Manual

A fact is a list of atomic values that are either referenced positionally (ordered facts) or by name
(non-ordered or template facts). Facts are referred to by index or address; section 2.4.1 gives
more details. The printed format of a fact-address is:

<Fact-XXX>
where XXX is the fact-index.

An instance is an object that is an instantiation or specific example of a class. Objects in CLIPS
are defined to be floats, integers, symbols, strings, multifield values, external-addresses,
fact-addresses or instances of a user-defined class. A user-defined class is created using the
defclass construct. An instance of a user-defined class is created with the make-instance
function, and such an instance can be referred to uniquely by address. Within the scope of a
module (see section 10.5.1), an instance can also be uniquely referred to by name. All of these
definitions will be covered in more detail in Sections 2.4.2, 2.5.2.3, 2.6 and 9. An instance-name
is formed by enclosing a symbol within left and right brackets. Thus, pure symbols may not be
surrounded by brackets. If the CLIPS Object Oriented Language (COOL) is not included in a
particular CLIPS configuration, then brackets may be wrapped around symbols. Some examples
of instance-names are:

[pump-1] [foo] [+++] [123-890]

Note that the brackets are not part of the name of the instance; they merely indicate that the
enclosed symbol is an instance-name. An instance-address can only be obtained by binding the
return value of a function called instance-address or by binding a variable to an instance
matching an object pattern on the LHS of a rule (i.e., it is not possible to specify an
instance-address by typing the value). A reference to an instance of a user-defined class can
either be by name or address; instance-addresses should only be used when speed is critical.
Within CLIPS, the printed representation of an instance-address is

<Instance-XXX>
where XXX is the name of the instance.

In CLIPS, a placeholder that has a value (one of the primitive data types) is referred to as a field.
The primitive data types are referred to as single-field values. A constant is a non-varying
single field wvalue directly expressed as a series of characters (which means that
external-addresses, fact-addresses and instance-addresses cannot be expressed as constants
because they can only be obtained through function calls and variable bindings). A multifield
value is a sequence of zero or more single field values. When displayed by CLIPS, multifield
values are enclosed in parentheses. Collectively, single and multifield values are referred to as
values. Some examples of multifield values are

(a) (1 bar foo) O (x 3.0 "red" 567)

8 Section 2 - CLIPS Overview

CLIPS Reference Manual

Note that the multifield value (a) is not the same as the single field value a. Multifield values are
created either by calling functions which return multifield values, by using wildcard arguments
in a deffunction, object message-handler, or method, or by binding variables during the
pattern-matching process for rules. In CLIPS, a variable is a symbolic location that is used to
store values. Variables are used by many of the CLIPS constructs (such as defrule, deffunction,
defmethod, and defmessage-handler) and their usage is explained in the sections describing each
of these constructs.

2.3.2 Functions

A function in CLIPS is a piece of executable code identified by a specific name which returns a
useful value or performs a useful side effect (such as displaying information). Throughout the
CLIPS documentation, the word function is generally used to refer only to functions which
return a value (whereas commands and actions are used to refer to functions which have a side
effect but generally do not return a value).

There are several types of functions. User defined functions and system defined functions are
pieces of code that have been written in an external language (such as C, FORTRAN, or Ada)
and linked with the CLIPS environment. System defined functions are those functions that have
been defined internally by the CLIPS environment. User defined functions are functions that
have been defined externally of the CLIPS environment. A complete list of system defined
functions can be found in appendix J.

The deffunction construct allows users to define new functions directly in the CLIPS
environment using CLIPS syntax. Functions defined in this manner appear and act like other
functions, however, instead of being directly executed (as code written in an external language
would be) they are interpreted by the CLIPS environment. Deffunctions are also discussed in
section 2.5.2.1 in the context of procedural knowledge representation.

Generic functions can be defined using the defgeneric and defmethod constructs. Generic
functions allow different pieces of code to be executed depending upon the arguments passed to
the generic function. Thus, a single function name can be overloaded with more than one piece
of code. Generic functions are also discussed in section 2.5.2.2 in the context of procedural
knowledge representation.

Function calls in CLIPS use a prefix notation — the arguments to a function always appear after
the function name. Function calls begin with a left parenthesis, followed by the name of the
function, then the arguments to the function follow (each argument separated by one or more
spaces). Arguments to a function can be primitive data types, variables, or another function call.
The function call is then closed with a right parenthesis. Some examples of function calls using
the addition (+) and multiplication (*) functions are shown following.

CLIPS Basic Programming Guide 9

CLIPS Reference Manual

(+345)

(* 560.0 2

389 D
*8(+3(™*234)9 (*x34)

While a function refers to a piece of executable code identified by a specific name, an
expression refers to a function which has its arguments specified (which may or may not be
functions calls as well). Thus the previous examples are expressions which make calls to the *
and + functions.

2.3.3 Constructs

Several defining constructs appear in CLIPS: defmodule, defrule, deffacts, deftemplate,
defglobal, deffunction, defclass, definstances, defmessage-handler, defgeneric, and
defmethod. All constructs in CLIPS are surrounded by parentheses. The construct opens with a
left parenthesis and closes with a right parenthesis. Defining a construct differs from calling a
function primarily in effect. Typically a function call leaves the CLIPS environment unchanged
(with some notable exceptions such as resetting or clearing the environment or opening a file).
Defining a construct, however, is explicitly intended to alter the CLIPS environment by adding
to the CLIPS knowledge base. Unlike function calls, constructs never have a return value.

As with any programming language, it is highly beneficial to comment CLIPS code. All
constructs (with the exception of defglobal) allow a comment directly following the construct
name. Comments also can be placed within CLIPS code by using a semicolon (;). Everything
from the semicolon until the next return character will be ignored by CLIPS. If the semicolon is
the first character in the line, the entire line will be treated as a comment. Examples of
commented code will be provided throughout the reference manual. Semicolon commented text
is not saved by CLIPS when loading constructs (however, the optional comment string within a
construct is saved).

2.4 DATA ABSTRACTION

There are three primary formats for representing information in CLIPS: facts, objects and global
variables.

2.4.1 Facts

Facts are one of the basic high-level forms for representing information in a CLIPS system. Each
fact represents a piece of information which has been placed in the current list of facts, called the
fact-list. Facts are the fundamental unit of data used by rules (see section 2.5.1).

Facts may be added to the fact-list (using the assert command), removed from the fact-list (using
the retract command), modified (using the modify command), or duplicated (using the

10 Section 2 - CLIPS Overview

CLIPS Reference Manual

duplicate command) through explicit user interaction or as a CLIPS program executes. The
number of facts in the fact-list and the amount of information that can be stored in a fact is
limited only by the amount of memory in the computer. If a fact is asserted into the fact-list that
exactly matches an already existing fact, the new assertion will be ignored (however, this
behavior can be changed, see sections 13.4.4 and 13.4.5).

Some commands, such as the retract, modify, and duplicate commands, require a fact to be
specified. A fact can be specified either by fact-index or fact-address. Whenever a fact is added
(or modified) it is given a unique integer index called a fact-index. Fact-indices start at zero and
are incremented by one for each new or changed fact. Whenever a reset or clear command is
given, the fact-indices restart at zero. A fact may also be specified through the use of a
fact-address. A fact-address can be obtained by capturing the return value of commands which
return fact addresses (such as assert, modify, and duplicate) or by binding a variable to the fact
address of a fact which matches a pattern on the LHS of a rule (see section 5.4.1.8 for details).

A fact identifier is a shorthand notation for displaying a fact. It consists of the character “f”,
followed by a dash, followed by the fact-index of the fact. For example, f-10 refers to the fact
with fact-index 10.

A fact is stored in one of two formats: ordered or non-ordered.

2.4.1.1 Ordered Facts

Ordered facts consist of a symbol followed by a sequence of zero or more fields separated by
spaces and delimited by an opening parenthesis on the left and a closing parenthesis on the right.
The first field of an ordered fact specifies a “relation” that applied to the remaining fields in the
ordered fact. For example, (father-of jack bill) states that bill is the father of jack.

Some examples of ordered facts are shown following.

(the pump is on)
(altitude is 10000 feet)
(grocery-list bread milk eggs)

Fields in a non-ordered fact may be of any of the primitive data types (with the exception of the
first field which must be a symbol), and no restriction is placed on the ordering of fields. The
following symbols are reserved and should not be used as the first field in any fact (ordered or
non-ordered): test, and, or, not, declare, logical, object, exists, and forall. These words are
reserved only when used as a deftemplate name (whether explicitly defined or implied). These
symbols may be used as slot names, however, this is not recommended.

CLIPS Basic Programming Guide 11

CLIPS Reference Manual

2.4.1.2 Non-ordered Facts

Ordered facts encode information positionally. To access that information, a user must know not
only what data is stored in a fact but which field contains the data. Non-ordered (or
deftemplate) facts provide the user with the ability to abstract the structure of a fact by assign-
ing names to each field in the fact. The deftemplate construct (see section 3) is used to create a
template which can then be used to access fields by name. The deftemplate construct is
analogous to a record or structure definition in programming languages such as Pascal and C.

The deftemplate construct allows the name of a template to be defined along with zero or more
definitions of named fields or slots. Unlike ordered facts, the slots of a deftemplate fact may be
constrained by type, value, and numeric range. In addition, default values can be specified for a
slot. A slot consists of an opening parenthesis followed by the name of the slot, zero or more
fields, and a closing parenthesis. Note that slots may not be used in an ordered fact and that
positional fields may not be used in a deftemplate fact.

Deftemplate facts are distinguished from ordered facts by the first field within the fact. The first
field of all facts must be a symbol, however, if that symbol corresponds to the name of a
deftemplate, then the fact is a deftemplate fact. The first field of a deftemplate fact is followed by
a list of zero or more slots. As with ordered facts, deftemplate facts are enclosed by an opening
parenthesis on the left and a closing parenthesis on the right.

Some examples of deftemplate facts are shown following.

(client (name "Joe Brown") (id X9345A))

(point-mass (x-velocity 100) (y-velocity -200))

(class (teacher "Martha Jones") (#-students 30) (Room "37A"))
(grocery-list (#-of-items 3) (items bread milk eggs))

Note that the order of slots in a deftemplate fact is not important. For example the following facts
are all identical:
(class (teacher "Martha Jones") (#-students 30) (Room "37A"))

(class (#-students 30) (teacher "Martha Jones™) (Room "37A"))
(class (Room "37A") (#-students 30) (teacher "Martha Jones"))

In contrast, note that the following ordered fact are not identical.
(class "Martha Jones" 30 "37A")

(class 30 "Martha Jones" "37A")
(class "37A" 30 "Martha Jones™)

The immediate advantages of clarity and slot order independence for deftemplate facts should be
readily apparent.

12 Section 2 - CLIPS Overview

CLIPS Reference Manual

In addition to being asserted and retracted, deftemplate facts can also be modified and duplicated
(using the modify and duplicate commands). Modifying a fact changes a set of specified slots
within that fact. Duplicating a fact creates a new fact identical to the original fact and then
changes a set of specified slots within the new fact. The benefit of using the modify and
duplicate commands is that slots which don’t change, don’t have to be specified.

2.4.1.3 Initial Facts

The deffacts construct allows a set of a priori or initial knowledge to be specified as a collection
of facts. When the CLIPS environment is reset (using the reset command) every fact specified
within a deffacts construct in the CLIPS knowledge base is added to the fact-list.

2.4.2 Objects

An object in CLIPS is defined to be a symbol, a string, a floating-point or integer number, a
multifield value, an external-address or an instance of a user-defined class. Section 2.3.1 explains
how to reference instances of user-defined classes. Objects are described in two basic parts:
properties and behavior. A class is a template for common properties and behavior of objects
which are instances of that class. Some examples of objects and their classes are:

Object (Printed Representation) Class
Rolls-Royce SYMBOL
"Rolls-Royce" STRING
8.0 FLOAT
8 INTEGER
(8.0 Rolls-Royce 8 [Rolls-Royce]) MULTIFIELD
<Pointer- 00CF61 AB> EXTERNAL-ADDRESS
[Rolls-Royce] CAR (a user-defined class)

Objects in CLIPS are split into two important categories: primitive types and instances of
user-defined classes. These two types of objects differ in the way they are referenced, created
and deleted as well as how their properties are specified.

Primitive type objects are referenced simply by giving their value, and they are created and
deleted implicitly by CLIPS as they are needed. Primitive type objects have no names or slots,
and their classes are predefined by CLIPS. The behavior of primitive type objects is like that of
instances of user-defined classes, however, in that you can define message-handlers and attach
them to the primitive type classes. It is anticipated that primitive types will not be used often in
an object-oriented programming (OOP) context; the main reason classes are provided for them is
for use in generic functions. Generic functions use the classes of their arguments to determine
which methods to execute; sections 2.3.2,2.5.2.2 and 8 give more detail.

CLIPS Basic Programming Guide 13

CLIPS Reference Manual

An instance of a user-defined class is referenced by name or address, and they are created and
deleted explicitly via messages and special functions. The properties of an instance of a
user-defined class are expressed by a set of slots, which the object obtains from its class. As
previously defined, slots are named single field or multifield values. For example, the object
Rolls-Royce is an instance of the class CAR. One of the slots in class CAR might be “price”, and
the Rolls-Royce object’s value for this slot might be $75,000.00. The behavior of an object is
specified in terms of procedural code called message-handlers, which are attached to the object’s
class. Message-handlers and manipulation of objects are described in Section 2.5.2.3. All
instances of a user-defined class have the same set of slots, but each instance may have different
values for those slots. However, two instances which have the same set of slots do not
necessarily belong to the same class, since two different classes can have identical sets of slots.

The primary difference between object slots and template (or non-ordered) facts is the notion of
inheritance. Inheritance allows the properties and behavior of a class to be described in terms of
other classes. COOL supports multiple inheritance: a class may directly inherit slots and
message-handlers from more than one class. Since inheritance is only useful for slots and
message-handlers, it is often not meaningful to inherit from one of the primitive type classes,
such as MULTIFIELD or NUMBER. This is because these classes cannot have slots and usually
do not have message-handlers.

Further discussion on these topics can be found in Section 2.6, and a comprehensive description
of the CLIPS Object-Oriented Language (COOL) can be found in Section 9.

2.4.2.1 Initial Objects

The definstances construct allows a set of a priori or initial knowledge to be specified as a
collection of instances of user-defined classes. When the CLIPS environment is reset (using the
reset command) every instance specified within a definstances construct in the CLIPS
knowledge base is added to the instance-list.

2.4.3 Global Variables

The defglobal construct allows variables to be defined which are global in scope throughout the
CLIPS environment. That is, a global variable can be accessed anywhere in the CLIPS
environment and retains its value independent of other constructs. In contrast, some constructs
(such as defrule and deffunction) allow local variables to be defined within the definition of the
construct. These local variables can be referred to within the construct, but have no meaning
outside the construct. A CLIPS global variable is similar to global variables found in procedural
programming languages such as LISP, C and Ada. Unlike C and Ada, however, CLIPS global
variables are weakly typed (they are not restricted to holding a value of a single data type).

14 Section 2 - CLIPS Overview

CLIPS Reference Manual

2.5 KNOWLEDGE REPRESENTATION

CLIPS provides heuristic and procedural paradigms for representing knowledge. These two
paradigms are discussed in this section. Object-oriented programming (which combines aspects
of both data abstraction and procedural knowledge) is discussed in section 2.6.

2.5.1 Heuristic Knowledge — Rules

One of the primary methods of representing knowledge in CLIPS is a rule. Rules are used to
represent heuristics, or “rules of thumb”, which specify a set of actions to be performed for a
given situation. The developer of an expert system defines a set of rules which collectively work
together to solve a problem. A rule is composed of an antecedent and a consequent. The
antecedent of a rule is also referred to as the if portion or the left-hand side (LHS) of the rule.
The consequent of a rule is also referred to as the then portion or the right-hand side (RHS) of
the rule.

The antecedent of a rule is a set of conditions (or conditional elements) which must be satisfied
for the rule to be applicable. In CLIPS, the conditions of a rule are satisfied based on the
existence or non-existence of specified facts in the fact-list or specified instances of user-defined
classes in the instance-list. One type of condition which can be specified is a pattern. Patterns
consist of a set of restrictions which are used to determine which facts or objects satisfy the
condition specified by the pattern. The process of matching facts and objects to patterns is called
pattern-matching. CLIPS provides a mechanism, called the inference engine, which
automatically matches patterns against the current state of the fact-list and instance-list and
determines which rules are applicable.

The consequent of a rule is the set of actions to be executed when the rule is applicable. The
actions of applicable rules are executed when the CLIPS inference engine is instructed to begin
execution of applicable rules. If more than one rule is applicable, the inference engine uses a
conflict resolution strategy to select which rule should have its actions executed. The actions of
the selected rule are executed (which may affect the list of applicable rules) and then the
inference engine selects another rule and executes its actions. This process continues until no
applicable rules remain.

In many ways, rules can be thought of as IF-THEN statements found in procedural programming
languages such as C and Ada. However, the conditions of an IF-THEN statement in a procedural
language are only evaluated when the program flow of control is directly at the IF-THEN
statement. In contrast, rules act like WHENEVER-THEN statements. The inference engine
always keeps track of rules which have their conditions satisfied and thus rules can immediately
be executed when they are applicable. In this sense, rules are similar to exception handlers found
in languages such as Ada.

CLIPS Basic Programming Guide 15

CLIPS Reference Manual

2.5.2 Procedural Knowledge

CLIPS also supports a procedural paradigm for representing knowledge like that of more
conventional languages, such as Pascal and C. Deffunctions and generic functions allow the user
to define new executable elements to CLIPS that perform a useful side-effect or return a useful
value. These new functions can be called just like the built-in functions of CLIPS.
Message-handlers allow the user to define the behavior of objects by specifying their response to
messages. Deffunctions, generic functions and message-handlers are all procedural pieces of
code specified by the user that CLIPS executes interpretively at the appropriate times.
Defmodules allow a knowledge base to be partitioned.

2.5.2.1 Deffunctions

Deffunctions allow you to define new functions in CLIPS directly. In previous versions of
CLIPS, the only way to have user-defined functions was to write them in some external
language, such as C or Ada, and then recompile and relink CLIPS with the new functions. The
body of a deffunction is a series of expressions similar to the RHS of a rule that are executed in
order by CLIPS when the deffunction is called. The return value of a deffunction is the value of
the last expression evaluated within the deffunction. Calling a deffunction is identical to calling
any other function in CLIPS. Deffunctions are covered comprehensively in Section 7.

2.5.2.2 Generic Functions

Generic functions are similar to deffunctions in that they can be used to define new procedural
code directly in CLIPS, and they can be called like any other function. However, generic
functions are much more powerful because they can be overloaded. A generic function will do
different things depending on the types (or classes) and number of its arguments. Generic
functions are comprised of multiple components called methods, where each method handles
different cases of arguments for the generic function. For example, you might overload the “+”
operator to do string concatenation when it is passed strings as arguments. However, the “+”
operator will still perform arithmetic addition when passed numbers. There are two methods in
this example: an explicit one for strings defined by the user and an implicit one which is the
standard CLIPS arithmetic addition operator. The return value of a generic function is the
evaluation of the last expression in the method executed. Generic functions are covered
comprehensively in Section 8.

2.5.2.3 Object Message-Passing

Objects are described in two basic parts: properties and behavior. Object properties are specified
in terms of slots obtained from the object’s class; slots are discussed in more detail in Section
2.4.2. Object behavior is specified in terms of procedural code called message-handlers which
are attached to the object’s class. Objects are manipulated via message-passing. For example, to

16 Section 2 - CLIPS Overview

CLIPS Reference Manual

cause the Rolls-Royce object, which is an instance of the class CAR, to start its engine, the user
must call the send function to send the message ‘“start-engine” to the Rolls-Royce. How the
Rolls-Royce responds to this message will be dictated by the execution of the message-handlers
for “start-engine” attached to the CAR class and any of its superclasses. The result of a message
is similar to a function call in CLIPS: a useful return value or side-effect.

Further discussion on message-handlers can be found in Section 2.6, and a comprehensive
description of the CLIPS Object-Oriented Language (COOL) can be found in Section 9.

2.5.2.4 Defmodules

Defmodules allow a knowledge based to be partitioned. Every construct defined must be placed
in a module. The programmer can explicitly control which constructs in a module are visible to
other modules and which constructs from other modules are visible to a module. The visibility of
facts and instances between modules can be controlled in a similar manner. Modules can also be
used to control the flow of execution of rules. Defmodules are covered comprehensively in
Section 10.

2.6 CLIPS OBJECT-ORIENTED LANGUAGE

This section gives a brief overview of the programming elements of the CLIPS Object-Oriented
Language (COOL). COOL includes elements of data abstraction and knowledge representation.
This section gives an overview of COOL as a whole, incorporating the elements of both
concepts. Object references are discussed in Section 2.3.1, and the structure of objects is
discussed in Sections 2.4.2 and 2.5.2.3. The comprehensive details of COOL are given in Section
9.

2.6.1 COOL Deviations from a Pure OOP Paradigm

In a pure OOP language, all programming elements are objects which can only be manipulated
via messages. In CLIPS, the definition of an object is much more constrained: floating-point and
integer numbers, symbols, strings, multifield values, external-addresses, fact-addresses and
instances of user-defined classes. All objects may be manipulated with messages, except
instances of user-defined classes, which must be. For example, in a pure OOP system, to add two
numbers together, you would send the message “add” to the first number object with the second
number object as an argument. In CLIPS, you may simply call the “+” function with the two
numbers as arguments, or you can define message-handlers for the NUMBER class which allow
you to do it in the purely OOP fashion.

All programming elements which are not objects must be manipulated in a non-OOP utilizing
function tailored for those programming elements. For example, to print a rule, you call the
function ppdefrule; you do not send a message “print” to a rule, since it is not an object.

CLIPS Basic Programming Guide 17

CLIPS Reference Manual

2.6.2 Primary OOP Features

There are five primary characteristics that an OOP system must possess: abstraction,
encapsulation, inheritance, polymorphism and dynamic binding. An abstraction is a higher
level, more intuitive representation for a complex concept. Encapsulation is the process whereby
the implementation details of an object are masked by a well-defined external interface. Classes
may be described in terms of other classes by use of inheritance. Polymorphism is the ability of
different objects to respond to the same message in a specialized manner. Dynamic binding is the
ability to defer the selection of which specific message-handlers will be called for a message
until run-time.

The definitions of new classes allows the abstraction of new data types in COOL. The slots and
message-handlers of these classes describe the properties and behavior of a new group of objects.

COOL supports encapsulation by requiring message-passing for the manipulation of instances of
user-defined classes. An instance cannot respond to a message for which it does not have a
defined message-handler.

COOL allows the user to specify some or all of the properties and behavior of a class in terms of
one or more unrelated superclasses. This process is called multiple inheritance. COOL uses the
existing hierarchy of classes to establish a linear ordering called the class precedence list for a
new class. Objects which are instances of this new class can inherit properties (slots) and
behavior (message-handlers) from each of the classes in the class precedence list. The word
precedence implies that properties and behavior of a class first in the list override conflicting
definitions of a class later in the list.

One COOL object can respond to a message in a completely different way than another object;
this is polymorphism. This is accomplished by attaching message-handlers with differing actions
but which have the same name to the classes of these two objects respectively.

Dynamic binding is supported in that an object reference (see section 2.3.1) in a send function
call is not bound until run-time. For example, an instance-name or variable might refer to one
object at the time a message is sent and another at a later time.

2.6.3 Instance-set Queries and Distributed Actions

In addition to the ability of rules to directly pattern-match on objects, COOL provides a useful
query system for determining, grouping and performing actions on sets of instances of
user-defined classes that meet user-defined criteria. The query system allows you to associate
instances that are either related or not. You can simply use the query system to determine if a
particular association set exists, you can save the set for future reference, or you can iterate an
action over the set. An example of the use of the query system might be to find the set of all pairs
of boys and girls that have the same age.

18 Section 2 - CLIPS Overview

CLIPS Reference Manual

Section 3 - Deftemplate Construct

Ordered facts encode information positionally. To access that information, a user must know not
only what data is stored in a fact but which field contains the data. Non-ordered (or deftemplate)
facts provide the user with the ability to abstract the structure of a fact by assigning names to
each field found within the fact. The deftemplate construct is used to create a template which
can then be used by non-ordered facts to access fields of the fact by name. The deftemplate
construct is analogous to a record or structure definition in programming languages such as
Pascal and C.

The syntax of the deftemplate construct is:

Syntax
(deftemplate <deftemplate-name> [<comment>]
<slot-definition>*)

<slot-definition> ::= <single-slot-definition> |
<multislot-definition>

<single-slot-definition>
::= (slot <slot-name>
<template-attribute>*)

<multislot-definition>
::= (multislot <slot-name>
<template-attribute>*)

<template-attribute> ::= <default-attribute> |
<constraint-attribute>

<default-attribute>
::= (default ?DERIVE | ?NONE | <expression>*) |
(default-dynamic <expression>*)

Redefining a deftemplate will result in the previous definition being discarded. A deftemplate
can not be redefined while it is being used (for example, by a fact or pattern in a rule). A
deftemplate can have any number of single or multifield slots. CLIPS always enforces the single
and multifield definitions of the deftemplate. For example, it is an error to store (or match)
multiple values in a single-field slot.

Example
(deftemplate object
(slot name)
(slot location)
(slot on-top-of)
(slot weight)
(multislot contents))

CLIPS Basic Programming Guide 19

CLIPS Reference Manual

3.1 SLOT DEFAULT VALUES

The <default-attribute> specifies the value to be used for unspecified slots of a template fact
when an assert action is performed. One of two types of default selections can be chosen: default
or dynamic-default.

The default attribute specifies a static default value. The specified expressions are evaluated
once when the deftemplate is defined and the result is stored with the deftemplate. The result is
assigned to the appropriate slot when a new template fact is asserted. If the keyword ?DERIVE is
used for the default value, then a default value is derived from the constraints for the slot (see
section 11.5 for more details). By default, the default attribute for a slot is (default 7DERIVE). If
the keyword ?NONE is used for the default value, then a value must explicitly be assigned for a
slot when an assert is performed. It is an error to assert a template fact without specifying the
values for the (default 7NONE) slots.

The default-dynamic attribute is a dynamic default. The specified expressions are evaluated
every time a template fact is asserted, and the result is assigned to the appropriate slot.

A single-field slot may only have a single value for its default. Any number of values may be
specified as the default for a multifield slot (as long as the number of values satisfies the
cardinality attribute for the slot).

Example
CLIPS> (clear)
CLIPS>
(deftemplate foo
(slot w (default ?NONE))
(slot x (default ?DERIVE))
(slot y (default (gensym*)))
(slot z (default-dynamic (gensym*))))
CLIPS> (assert (foo))

[TMPLTRHS1] Slot w requires a value because of its (default ?NONE) attribute.
CLIPS> (assert (foo (w 3)))

<Fact-0>

CLIPS> (assert (foo (w 4)))

<Fact-1>

CLIPS> (facts)

f-0 (foo (w 3) (x nil) (y genl) (z gen2))

f-1 (foo (w 4) (x nil) (y genl) (z gen3))

For a total of 2 facts.

CLIPS>

3.2 SLOT DEFAULT CONSTRAINTS FOR PATTERN-MATCHING

Single-field slots that are not specified in a pattern on the LHS of a rule are defaulted to
single-field wildcards (?) and multifield slots are defaulted to multifield wildcards ($?).

20 Section 3 - Deftemplate Construct

CLIPS Reference Manual

3.3 SLOT VALUE CONSTRAINT ATTRIBUTES

The syntax and functionality of single and multifield constraint attributes are described in detail
in Section 11. Static and dynamic constraint checking for deftemplates is supported. Static
checking is performed when constructs or commands using deftemplates slots are being parsed
(and the specific deftemplate associated with the construct or command can be immediately
determined). Template patterns used on the LHS of a rule are also checked to determine if
constraint conflicts exist among variables used in more than one slot. Errors for inappropriate
values are immediately signaled. References to fact-indexes made in commands such as modify
and duplicate are considered to be ambiguous and are never checked using static checking.
Static checking is enabled by default. This behavior can be changed using the
set-static-constraint-checking function. Dynamic checking is also supported. If dynamic
checking is enabled, then new deftemplate facts have their values checked when added to the
fact-list. This dynamic checking is disabled by default. This behavior can be changed using the
set-dynamic-constraint-checking function. If a violation occurs when dynamic checking is
being performed, then execution will be halted.

Example
(deftemplate object

(slot name
(type SYMBOL)
(default ?DERIVE))
(slot location
(type SYMBOL)
(default ?DERIVE))
(slot on-top-of
(type SYMBOL)
(default floor))
(slot weight
(allowed-values light heavy)
(default light))
(multislot contents
(type SYMBOL)
(default ?DERIVE)))

3.4 IMPLIED DEFTEMPLATES

Asserting or referring to an ordered fact (such as in a LHS pattern) creates an “implied”
deftemplate with a single implied multifield slot. The implied multifield slot’s name is not
printed when the fact is printed. The implied deftemplate can be manipulated and examined
identically to any user defined deftemplate (although it has no pretty print form).

Example
CLIPS> (clear)

CLIPS> (assert (foo 1 2 3))
<Fact-0>

CLIPS> (defrule yak (bar 4 5 6) =>)
CLIPS> (list-deftemplates)

CLIPS Basic Programming Guide 21

CLIPS Reference Manual

22

initial-fact
foo
bar

For a total of 3 deftemplates.

CLIPS> (facts)

-0 (foo 12 3)
For a total of 1 fact.
CLIPS>

Section 3 - Deftemplate Construct

CLIPS Reference Manual

Section 4 - Deffacts Construct

With the deffacts construct, a list of facts can be defined which are automatically asserted
whenever the reset command is performed. Facts asserted through deffacts may be retracted or
pattern-matched like any other fact. The initial fact-list, including any defined deffacts, is always
reconstructed after a reset command.

Syntax
(deffacts <deffacts-name> [<comment>]
<RHS-pattern>*)

Redefining a currently existing deffacts causes the previous deffacts with the same name to be
removed even if the new definition has errors in it. There may be multiple deffacts constructs
and any number of facts (either ordered or deftemplate) may be asserted into the initial fact-list
by each deffacts construct.

Dynamic expressions may be included in a fact by embedding the expression directly within the
fact. All such expressions are evaluated when CLIPS is reset.

Example
(deffacts startup "Refrigerator Status"

(refrigerator light on)
(refrigerator door open)
(refrigerator temp (get-temp)))

Upon startup and after a clear command, CLIPS automatically constructs the following
deftemplate and deffacts.

(deftemplate initial-fact)

(deffacts initial-fact
(initial-fact))

This deffacts provides a convenient method for starting the execution of a system — Rules that
are given no conditional element are automatically given a pattern which matches the
(initial-fact) fact.

Important Note

Once created, the initial-fact deffacts and deftemplate are treated just as any other deffacts or
deftemplate defined by the user would be —All of the functions and commands appropriate for
these constructs can be applied to them. In practice, however, the undeffacts and undeftemplate
commands should never be applied to these automatically created constructs since many
conditional elements rely on the existence of the initial-fact fact for correct operation. Similarly,
the initial-fact fact asserted by the initial-fact deffacts when a reset command is issued, should
never be retracted by a program.

CLIPS Basic Programming Guide 23

CLIPS Reference Manual

Section 5 - Defrule Construct

One of the primary methods of representing knowledge in CLIPS is a rule. A rule is a collection
of conditions and the actions to be taken if the conditions are met. The developer of an expert
system defines the rules which describe how to solve a problem. Rules execute (or fire) based on
the existence or non-existence of facts or instances of user-defined classes. CLIPS provides the
mechanism (the inference engine) which attempts to match the rules to the current state of the
system (as represented by the fact-list and instance-list) and applies the actions.

Throughout this section, the term pattern entity will be used to refer to either a fact or an
instance of a user-defined class.

5.1 DEFINING RULES

Rules are defined using the defrule construct.

Syntax
(defrule <rule-name> [<comment>]
[<declaration>] ; Rule Properties
<conditional-element>* ; Left-Hand Side (LHS)
=>
<action>*) ; Right-Hand Side (RHS)

Redefining a currently existing defrule causes the previous defrule with the same name to be
removed even if the new definition has errors in it. The LHS is made up of a series of conditional
elements (CEs) which typically consist of pattern conditional elements (or just simply patterns)
to be matched against pattern entities. An implicit and conditional element always surrounds all
the patterns on the LHS. The RHS contains a list of actions to be performed when the LHS of the
rule is satisfied. In addition, the LHS of a rule may also contain declarations about the rule’s
properties immediately following the rule’s name and comment (see section 5.4.10 for more
details). The arrow (=>) separates the LHS from the RHS. There is no limit to the number of
conditional elements or actions a rule may have (other than the limitation placed by actual avail-
able memory). Actions are performed sequentially if, and only if, all conditional elements on the
LHS are satisfied.

If no conditional elements are on the LHS, the pattern CE (initial-fact) or (initial-object) is
automatically used. If no actions are on the RHS, the rule can be activated and fired but nothing
will happen.

As rules are defined, they are incrementally reset. This means that CEs in newly defined rules

can be satisfied by pattern entities at the time the rule is defined, in addition to pattern entities
created after the rule is defined (see sections 13.1.8, 13.6.9, and 13.6.10 for more details).

CLIPS Basic Programming Guide 25

CLIPS Reference Manual

Example

(defrule example-rule "This is an example of a simple rule"
(refrigerator light on)
(refrigerator door open)
=>
(assert (refrigerator food spoiled)))

5.2 BASIC CYCLE OF RULE EXECUTION

Once a knowledge base (in the form of rules) is built and the fact-list and instance-list is
prepared, CLIPS is ready to execute rules. In a conventional language, the starting point, the
stopping point, and the sequence of operations are defined explicitly by the programmer. With
CLIPS, the program flow does not need to be defined quite so explicitly. The knowledge (rules)
and the data (facts and instances) are separated, and the inference engine provided by CLIPS is
used to apply the knowledge to the data. The basic execution cycle is as follows:

a)

b)

d)

26

If the rule firing limit has been reached or there is no current focus, then execution is halted.
Otherwise, the top rule on the agenda of the module which is the current focus is selected
for execution. If there are no rules on that agenda, then the current focus is removed from
the focus stack and the current focus becomes the next module on the focus stack. If the
focus stack is empty, then execution is halted, otherwise step a is executed again. See
sections 5.4.10.2, 10.6, 12.2, and 13.7 for information on the focus stack and the current
focus.

The right-hand side (RHS) actions of the selected rule are executed. The use of the return
function on the RHS of a rule may remove the current focus from the focus stack (see
sections 10.6 and 12.6.7). The number of rules fired is incremented for use with the rule
firing limit.

As a result of step b, rules may be activated or deactivated. Activated rules (those rules
whose conditions are currently satisfied) are placed on the agenda of the module in which
they are defined. The placement on the agenda is determined by the salience of the rule and
the current conflict resolution strategy (see sections 5.3, 5.4.10, 13.7.5, and 13.7.6).
Deactivated rules are removed from the agenda. If the activations item is being watched (see
section 13.2), then an informational message will be displayed each time a rule is activated
or deactivated.

If dynamic salience is being used, the salience values for all rules on the agenda are

reevaluated (see sections 5.4.10, 13.7.9, and 13.7.10). Repeat the cycle beginning with step
a.

Section 5 - Defrule Construct

CLIPS Reference Manual

5.3 CONFLICT RESOLUTION STRATEGIES

The agenda is the list of all rules which have their conditions satisfied (and have not yet been
executed). Each module has its own agenda. The agenda acts similar to a stack (the top rule on
the agenda is the first one to be executed). When a rule is newly activated, its placement on the
agenda is based (in order) on the following factors:

a) Newly activated rules are placed above all rules of lower salience and below all rules of
higher salience.

b) Among rules of equal salience, the current conflict resolution strategy is used to determine
the placement among the other rules of equal salience.

c) If arule is activated (along with several other rules) by the same assertion or retraction of a
fact, and steps a and b are unable to specify an ordering, then the rule is arbitrarily (not
randomly) ordered in relation to the other rules with which it was activated. Note, in this
respect, the order in which rules are defined has an arbitrary effect on conflict resolution
(which is highly dependent upon the current underlying implementation of rules). Do not
depend upon this arbitrary ordering for the proper execution of your rules.

CLIPS provides seven conflict resolution strategies: depth, breadth, simplicity, complexity, lex,
mea, and random. The default strategy is depth. The current strategy can be set by using the
set-strategy command (which will reorder the agenda based upon the new strategy).

5.3.1 Depth Strategy

Newly activated rules are placed above all rules of the same salience. For example, given that
fact-a activates rule-1 and rule-2 and fact-b activates rule-3 and rule-4, then if fact-a is asserted
before fact-b, rule-3 and rule-4 will be above rule-1 and rule-2 on the agenda. However, the
position of rule-1 relative to rule-2 and rule-3 relative to rule-4 will be arbitrary.

5.3.2 Breadth Strategy

Newly activated rules are placed below all rules of the same salience. For example, given that
fact-a activates rule-1 and rule-2 and fact-b activates rule-3 and rule-4, then if fact-a is asserted
before fact-b, rule-1 and rule-2 will be above rule-3 and rule-4 on the agenda. However, the
position of rule-1 relative to rule-2 and rule-3 relative to rule-4 will be arbitrary.

5.3.3 Simplicity Strategy

Among rules of the same salience, newly activated rules are placed above all activations of rules
with equal or higher specificity. The specificity of a rule is determined by the number of

CLIPS Basic Programming Guide 27

CLIPS Reference Manual

comparisons that must be performed on the LHS of the rule. Each comparison to a constant or
previously bound variable adds one to the specificity. Each function call made on the LHS of a
rule as part of the :, =, or test conditional element adds one to the specificity. The boolean
functions and, or, and not do not add to the specificity of a rule, but their arguments do.
Function calls made within a function call do not add to the specificity of a rule. For example,
the following rule

(defrule example
(item ?x ?y ?x)
(test (and (numberp ?x) (> ?x (+ 10 ?y)) (< ?x 100)))
=>)

has a specificity of 5. The comparison to the constant item, the comparison of ?x to its previous
binding, and the calls to the numberp, <, and > functions each add one to the specificity for a
total of 5. The calls to the and and + functions do not add to the specificity of the rule.

5.3.4 Complexity Strategy

Among rules of the same salience, newly activated rules are placed above all activations of rules
with equal or lower specificity.

5.3.5 LEX Strategy

Among rules of the same salience, newly activated rules are placed using the OPSS5 strategy of
the same name. First the recency of the pattern entities that activated the rule is used to determine
where to place the activation. Every fact and instance is marked internally with a “time tag” to
indicate its relative recency with respect to every other fact and instance in the system. The
pattern entities associated with each rule activation are sorted in descending order for
determining placement. An activation with a more recent pattern entities is placed before
activations with less recent pattern entities. To determine the placement order of two activations,
compare the sorted time tags of the two activations one by one starting with the largest time tags.
The comparison should continue until one activation’s time tag is greater than the other
activation’s corresponding time tag. The activation with the greater time tag is placed before the
other activation on the agenda.

If one activation has more pattern entities than the other activation and the compared time tags
are all identical, then the activation with more time tags is placed before the other activation on
the agenda. If two activations have the exact same recency, the activation with the higher
specificity is placed above the activation with the lower specificity. Unlike OPS5, the not
conditional elements in CLIPS have pseudo time tags which are used by the LEX conflict
resolution strategy. The time tag of a not CE is always less than the time tag of a pattern entity,
but greater than the time tag of a not CE that was instantiated after the not CE in question.

28 Section 5 - Defrule Construct

CLIPS Reference Manual

As an example, the following six activations have been listed in their LEX ordering (where the
comma at the end of the activation indicates the presence of a not CE). Note that a fact’s time tag
is not necessarily the same as it’s index (since instances are also assigned time tags), but if one
fact’s index is greater than another facts’s index, then it’s time tag is also greater. For this
example, assume that the time tags and indices are the same.

rule-6:
rule-5:
rule-1:
rule-2:
rule-4:
rule-3:

Shown following are the same activations with the fact indices sorted as they would be by the
LEX strategy for comparison.

rule-6: f-4
rule-5: f-3
rule-1: f-3
rule-2: f-3
rule-4: f-2
rule-3: f-2

5.3.6 MEA Strategy

Among rules of the same salience, newly activated rules are placed using the OPSS5 strategy of
the same name. First the time tag of the pattern entity associated with the first pattern is used to
determine where to place the activation. An activation thats first pattern’s time tag is greater than
another activations first pattern’s time tag is placed before the other activation on the agenda. If
both activations have the same time tag associated with the first pattern, then the LEX strategy is
used to determine placement of the activation. Again, as with the CLIPS LEX strategy, negated
patterns have pseudo time tags.

As an example, the following six activations have been listed in their MEA ordering (where the
comma at the end of the activation indicates the presence of a negated pattern).

rule-2: f
rule-3: f
rule-6: f
rule-5: f-
rule-1: f
rule-4: f

5.3.7 Random Strategy

Each activation is assigned a random number which is used to determine its placement among
activations of equal salience. This random number is preserved when the strategy is changed so

CLIPS Basic Programming Guide 29

CLIPS Reference Manual

that the same ordering is reproduced when the random strategy is selected again (among
activations that were on the agenda when the strategy was originally changed).

Usage Note

A conflict resolution strategy is an implicit mechanism for specifying the order in which rules of
equal salience should be executed. In early expert system tools, this was often the only
mechanism provided to specify the order. Because the mechanism is implicit, it’s not possible to
determine the programmer’s original intent simply by looking at the code. [Of course in the real
world there isn’t a need to guess the original intent because the code is riddled with helpful
comments.] Rather than explicitly indicating that rule A should be executed before rule B, the
order of execution is implicitly determined by the order in which facts are asserted and the
complexity of the rules. The assumption one must make when examining the code is that the
original programmer carefully analyzed the rules and followed the necessary conventions so that
the rules execute in the appropriate sequence.

Because they require explicit declarations, the preferred mechanisms in CLIPS for ordering the
execution of rules are salience and modules. Salience allows one to explicitly specify that one
rule should be executed before another rule. Modules allow one to explicitly specify that all of
the rules in a particular group (module) should be executed before all of the rules in a different
group. Thus, when designing a program the following convention should be followed: if two
rules have the same salience, are in the same module, and are activated concurrently, then the
order in which they are executed should not matter. For example, the following two rules need
correction because they can be activated at the same time, but the order in which they execute
matters:

(defrule rule-1
(factoid a)
=>
(assert (factoid b)))

(defrule rule-2
?f <- (factoid a)
(factoid d)
=>
(retract ?7f)
(assert (factoid c)))

Programmers should also be careful to avoid overusing salience. Trying to unravel the
relationships between dozens of salience values can be just as confusing as the implicit use of a
conflict resolution strategy in determining rule execution order. It’s rarely necessary to use more
than five to ten salience values in a well-designed program.

Most programs should use the default conflict resolution strategy of depth. The bread, simplicity,
and complexity strategies are provided largely for academic reasons (i.e. the study of conflict

30 Section 5 - Defrule Construct

CLIPS Reference Manual

resolution strategies). The lex and mea strategies are provided to help in converting OPS5
programs to CLIPS.

The random strategy is useful for testing. Because this strategy randomly orders activations
having the same salience, it is useful in detecting whether the execution order of rules with the
same salience effects the program behavior. Before running a program with the random strategy,
first seed the random number generator using the seed function. The same seed value can be
subsequently be used if it is necessary to replicate the results of the program run.

5.4 LHS SYNTAX

This section describes the syntax used on the LHS of a rule. The LHS of a CLIPS rule is made
up of a series of conditional elements (CEs) that must be satisfied for the rule to be placed on the
agenda. There are eight types of conditional elements: pattern CEs, test CEs, and CEs, or CEs,
not CEs, exists CEs, forall CEs, and logical CEs. The pattern CE is the most basic and
commonly used conditional element. Pattern CEs contain constraints which are used to
determine if any pattern entities (facts or instances) satisfy the pattern. The test CE is used to
evaluate expressions as part of the pattern-matching process. The and CE is used to specify that
an entire group of CEs must all be satisfied. The or CE is used to specify that only one of a
group of CEs must be satisfied. The not CE is used to specify that a CE must not be satisfied.
The exists CE is used to test for the occurence of at least one partial match for a set of CEs. The
forall CE is used to test that a set of CEs is satisfied for every partial match of a specified CE.
Finally, the logical CE allows assertions of facts and the creation of instances on the RHS of a
rule to be logically dependent upon pattern entities matching patterns on the LHS of a rule (truth
maintenance).

Syntax

<conditional-element> ::= <pattern-CE> |
<assigned-pattern-CE> |
<not-CE> |
<and-CE> |
<or-CE> |
<logical-CE> |
<test-CE> |
<exists-CE> |
<forall-CE>

5.4.1 Pattern Conditional Element

Pattern conditional elements consist of a collection of field constraints, wildcards, and
variables which are used to constrain the set of facts or instances which match the pattern CE. A
pattern CE is satisfied by each and every pattern entity that satisfies its constraints. Field
constraints are a set of constraints that are used to test a single field or slot of a pattern entity. A
field constraint may consist of only a single literal constraint, however, it may also consist of

CLIPS Basic Programming Guide 31

CLIPS Reference Manual

several constraints connected together. In addition to literal constraints, CLIPS provides three
other types of constraints: connective constraints, predicate constraints, and return value
constraints. Wildcards are used within pattern CEs to indicate that a single field or group of
fields can be matched by anything. Variables are used to store the value of a field so that it can
be used later on the LHS of a rule in other conditional elements or on the RHS of a rule as an
argument to an action.

The first field of any pattern must be a symbol and can not use any other constraints. This first
field is used by CLIPS to determine if the pattern applies to an ordered fact, a template fact, or an
instance. The symbol object is reserved to indicate an object pattern. Any other symbol used
must correspond to a deftemplate name (or an implied deftemplate will be created). Slot names
must also be symbols and cannot contain any other constraints.

For object and deftemplate patterns, a single field slot can only contain one field constraint and
that field constraint must only be able to match a single field (no multifield wildcards or
variables). A multifield slot can contain any number of field constraints.

The examples and syntax shown in the following sections will be for ordered and deftemplate
fact patterns. Section 5.4.1.7 will discuss differences between deftemplate patterns and object
patterns. The following constructs are used by the examples.

(deffacts data-facts
(data 1.0 blue "red")
(data 1 blue)

(data 1 blue red)
(data 1 blue RED)
(data 1 blue red 6.9))

(deftemplate person
(slot name)
(slot age)
(multislot friends))

(deffacts people
(person (name Joe) (age 20))
(person (name Bob) (age 20))
(person (name Joe) (age 34))
(person (name Sue) (age 34))
(person (name Sue) (age 20)))

5.4.1.1 Literal Constraints

The most basic constraint which can be used in a pattern CE is one which precisely defines the
exact value that will match a field. This is called a literal constraint. A literal pattern CE
consists entirely of constants such as floats, integers, symbols, strings, and instance names. It
does not contain any variables or wildcards. All constraints in a literal pattern must be matched
exactly by all fields of a pattern entity.

32 Section 5 - Defrule Construct

CLIPS Reference Manual

Syntax
An ordered pattern conditional element containing only literals has the following basic syntax:

(<constant-1> ... <constant-n>)

A deftemplate pattern conditional element containing only literals has the following basic syntax:

(<deftemplate-name> (<slot-name-1> <constant-1>)
[]

[]
[
(<slot-name-n> <constant-n>))

Example 1
This example utilizes the data-facts deffacts shown in section 5.4.1.

CLIPS> (clear)

CLIPS> (defrule find-data (data 1 blue red) =>)
CLIPS> (reset)

CLIPS> (agenda)

7] find-data: f-3

For a total of 1 activation.
CLIPS> (facts)

f-0 (initial-fact)

f-1 (data 1.0 blue "red")
f-2 (data 1 blue)

f-3 (data 1 blue red)

f-4 (data 1 blue RED)

f-5 (data 1 blue red 6.9)
For a total of 6 facts.
CLIPS>

Example 2
This example utilizes the person deftemplate and people deffacts shown in section 5.4.1.

CLIPS> (clear)

CLIPS>

(defrule Find-Bob
(person (name Bob) (age 20))
=>)

CLIPS>

(defrule Find-Sue
(person (age 34) (name Sue))
=>)

CLIPS> (reset)

CLIPS> (agenda)

0 Find-Sue: f-4

7] Find-Bob: f-2

For a total of 2 activations.

CLIPS> (facts)

f-0 (initial-fact)

CLIPS Basic Programming Guide 33

CLIPS Reference Manual

(person (name Joe) (age 20) (friends))
(person (name Bob) (age 20) (friends))
(person (name Joe) (age 34) (friends))
(person (name Sue) (age 34) (friends))
(person (name Sue) (age 20) (friends))
or a total of 6 facts.

CLIPS>

uphwmNnE

f-
f-
f-
£-
f-
F

5.4.1.2 Wildcards Single- and Multifield

CLIPS has two wildcard symbols that may be used to match fields in a pattern. CLIPS interprets
these wildcard symbols as standing in place of some part of a pattern entity. The single-field
wildcard, denoted by a question mark character (?), matches any value stored in exactly one
field in the pattern entity. The multifield wildcard, denoted by a dollar sign followed by a
question mark ($?), matches any value in zero or more fields in a pattern entity. Single-field and
multifield wildcards may be combined in a single pattern in any combination. It is illegal to use a
multifield wildcard in a single field slot of a deftemplate or object pattern. By default, an
unspecified single-field slot in a deftemplate/object pattern is matched against an implied
single-field wildcard. Similarly, an unspecified multifield slot in a deftemplate/object pattern is
matched against an implied multifield-wildcard.

Syntax
An ordered pattern conditional element containing only literals and wildcards has the following

basic syntax:

(<constraint-1> ... <constraint-n>)
where
<constraint> ::= <constant> | ? | $?

A deftemplate pattern conditional element containing only literals and wildcards has the
following basic syntax:

(<deftemplate-name> (<slot-name-1> <constraint-1>)
[]

[]
[]
(<slot-name-n> <constraint-n>))

Example 1
This example utilizes the data-facts deffacts shown in section 5.4.1.

CLIPS> (clear)

CLIPS>

(defrule find-data
(data ? blue red $?)

34 Section 5 - Defrule Construct

CLIPS Reference Manual

=)

CLIPS> (reset)

CLIPS> (agenda)

] find-data: f-5

/] find-data: f-3

For a total of 2 activations.
CLIPS> (facts)

-0 (initial-fact)

f-1 (data 1.0 blue "red™)
f-2 (data 1 blue)

f-3 (data 1 blue red)

f-4 (data 1 blue RED)

f-5 (data 1 blue red 6.9)
For a total of 6 facts.
CLIPS>

Example 2
This example utilizes the person deftemplate and people deffacts shown in section 5.4.1.

CLIPS> (clear)
CLIPS>
(defrule match-all-persons
(person)
=>)
CLIPS> (reset)
CLIPS> (agenda)
match-all-persons: f-5
match-all-persons: f-4
match-all-persons: f-3
f-2
f-1

(SRS

match-all-persons:
match-all-persons:
or a total of 5 activations.
LIPS> (facts)
-0 (initial-fact)
-1 (person (name Joe) (age 20) (friends))
-2 (person (name Bob) (age 20) (friends))
-3 (person (name Joe) (age 34) (friends))
-4 (person (name Sue) (age 34) (friends))
-5 (person (name Sue) (age 20) (friends))
or a total of 6 facts.
CLIPS>

0
0
0
F
C
.F
.F
.F
.F
.F
.F
F

Multifield wildcard and literal constraints can be combined to yield some powerful
pattern-matching capabilities. A pattern to match all of the facts that have the symbol YELLOW
in any field (other than the first) could be written as

(data $? YELLOW $7)

Some examples of what this pattern would match are

(data YELLOW blue red green)
(data YELLOW red)
(data red YELLOW)

CLIPS Basic Programming Guide 35

CLIPS Reference Manual

(data YELLOW)
(data YELLOW data YELLOW)

The last fact will match twice since YELLOW appears twice in the fact. The use of multifield
wildcards should be confined to cases of patterns in which the single-field wildcard cannot create
a pattern that satisfies the match required, since the multifield wildcard produces every possible
match combination that can be derived from a pattern entity. This derivation of matches requires
a significant amount of time to perform when compared to the time needed to perform a
single-field match.

5.4.1.3 Variables Single- and Multifield

Wildcard symbols replace portions of a pattern and accept any value. The value of the field being
replaced may be captured in a variable for comparison, display, or other manipulations. This is
done by directly following the wildcard symbol with a variable name.

Syntax
Expanding on the syntax definition given in section 5.4.1.2 now gives:

<constraint> ::= <constant> | ? | $? |
<single-field-variable> |
<multifield-variable>

<single-field-variable> ::= ?<variable-symbol>

<multifield-variable>

$?<variable-symbol>

where <variable-symbol> is similar to a symbol, except that it must start with an alphabetic char-
acter. Double quotes are not allowed as part of a variable name; i.e. a string cannot be used for a
variable name. The rules for pattern-matching are similar to those for wildcard symbols. On its
first appearance, a variable acts just like a wildcard in that it will bind to any value in the field(s).
However, later appearances of the variable require the field(s) to match the binding of the
variable. The binding will only be true within the scope of the rule in which it occurs. Each rule
has a private list of variable names with their associated values; thus, variables are local to a rule.
Bound variables can be passed to external functions. The $ operator has special significance on
the LHS as a pattern-matching operator to indicate that zero or more fields need to be matched.
In other places (such as the RHS of a rule), the $ in front of a variable indicates that sequence
expansion should take place before calling the function. Thus, when passed as parameters in
function calls (either on the LHS or RHS of a rule), multifield variables should not be preceded
by the $ (unless sequence expansion is desired). All other uses of a multifield variable on the
LHS of a rule, however, should use the $. It is illegal to use a multifield variable in a single field
slot of a deftemplate/object pattern.

Example 1
CLIPS> (clear)

CLIPS> (reset)

36 Section 5 - Defrule Construct

CLIPS Reference Manual

CLIPS> (assert (data 2 blue green)
(data 1 blue)
(data 1 blue red))
<Fact-3>
CLIPS> (facts)
-0 (initial-fact)
f-1 (data 2 blue green)
f-2 (data 1 blue)
f-3 (data 1 blue red)
For a total of 4 facts.
CLIPS>
(defrule find-data-1
(data ?x ?y ?7z)
=>
(printout t ?x
CLIPS> (run)
1 : blue : red
2 : blue : green
CLIPS>

o "2y "o " 7z crlf))

Example 2
CLIPS> (reset)

CLIPS> (assert (data 1 blue)
(data 1 blue red)
(data 1 blue red 6.9))
<Fact-3>
CLIPS> (facts)
-0 (initial-fact)
f-1 (data 1 blue)
f-2 (data 1 blue red)
f-3 (data 1 blue red 6.9)
For a total of 4 facts.
CLIPS>
(defrule find-data-1
(data ?x $?y ?2)
=>
(printout t "7x

=" ?x crlf

"?y = " ?y crlf
"?z = " ?z crlif
B " crlf))

CLIPS> (run)

x =1

?y = (blue red)

7z = 6.9

’x =1

?y = (blue)

?z = red

x =1

2y = O

7z = blue

CLIPS>

CLIPS Basic Programming Guide 37

CLIPS Reference Manual

Once the initial binding of a variable occurs, all references to that variable have to match the
value that the first binding matched. This applies to both single- and multifield variables. It also
applies across patterns.

Example 3
CLIPS> (clear)

CLIPS>

(deffacts data
(data red green)
(data purple blue)
(data purple green)
(data red blue green)
(data purple blue green)
(data purple blue brown))

CLIPS>

(defrule find-data-1
(data red ?x)
(data purple ?x)
=>)

CLIPS>

(defrule find-data-2
(data red $7x)
(data purple $?x)
=)

CLIPS> (reset)

CLIPS> (facts)

f-0 (initial-fact)

f-1 (data red green)

f-2 (data purple blue)

f-3 (data purple green)

f-4 (data red blue green)
f-5 (data purple blue green)
f-6 (data purple blue brown)
For a total of 7 facts.

CLIPS> (agenda)

0 find-data-2: f-4,f-5

] find-data-1: f-1,f-3

7] find-data-2: f-1,f-3

For a total of 3 activations.
CLIPS>

5.4.1.4 Connective Constraints

Three connective constraints are available for connecting individual constraints and variables to
each other. These are the & (and), | (or), and ~ (not) connective constraints. The & constraint is
satisfied if the two adjoining constraints are satisfied. The | constraint is satisfied if either of the
two adjoining constraints is satisfied. The ~ constraint is satisfied if the following constraint is
not satisfied. The connective constraints can be combined in almost any manner or number to
constrain the value of specific fields while pattern-matching. The ~ constraint has highest
precedence, followed by the & constraint, followed by the | constraint. Otherwise, evaluation of
multiple constraints can be considered to occur from left to right. There is one exception to the

38 Section 5 - Defrule Construct

CLIPS Reference Manual

precedence rules which applies to the binding occurrence of a variable. If the first constraint is a
variable followed by an & connective constraint, then the first constraint is treated as a separate
constraint which also must be satisified. Thus the constraint ?x&redlblue is treated like
7x&(redlblue) rather than (?x&red)lblue as the normal precedence rules would indicate.

Basic Syntax
Connective constraints have the following basic syntax:

<term-1>&<term-2> ... &<term-3>
<term-1>|<term-2> ... |<term-3>
~<term>

where <term> could be a single-field variable, multifield variable, constant, or connected
constraint.

Syntax
Expanding on the syntax definition given in section 5.4.1.3 now gives:

<constraint> ::= ? | $? | <connected-constraint>

<connected-constraint>
::= <single-constraint> |
<single-constraint> & <connected-constraint> |
<single-constraint> | <connected-constraint>

<single-constraint> ::= <term> | ~<term>

<term> ::= <constant> |
<single-field-variable> |
<multifield-variable>

The & constraint typically is used only in conjunction with other constraints or variable bindings.
Notice that connective constraints may be used together and/or with variable bindings. If the first
term of a connective constraint is the first occurrence of a variable name, then the field will be
constrained only by the remaining field constraints. The variable will be bound to the value of
the field. If the variable has been bound previously, it is considered an additional constraint
along with the remaining field constraints; i.e., the field must have the same value already bound
to the variable and must satisfy the field constraints.

Example 1
CLIPS> (clear)
CLIPS> (deftemplate data-B (slot value))
CLIPS>
(deffacts AB
(data-A green)
(data-A blue)
(data-B (value red))
(data-B (value blue)))

CLIPS Basic Programming Guide 39

CLIPS Reference Manual

CLIPS>
(defrule examplel-1
(data-A ~blue)
=)
CLIPS>
(defrule examplel-2
(data-B (value ~red&~green))
=>)
CLIPS>
(defrule examplel-3
(data-B (value greenlred))
=)
CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (data-A green)
f-2 (data-A blue)
f-3 (data-B (value red))
f-4 (data-B (value blue))
For a total of 5 facts.
CLIPS> (agenda)

0 examplel-2: f-4
0 examplel-3: f-3
] examplel-1: f-1
For a total of 3 activations.
CLIPS>
Example 2

CLIPS> (clear)
CLIPS> (deftemplate data-B (slot value))
CLIPS>
(deffacts B
(data-B (value red))
(data-B (value blue)))
CLIPS>
(defrule example2-1
(data-B (value ?x&~red&~green))
=>
(printout t "?x in example2-1 = " ?x crlf))
CLIPS>
(defrule example2-2
(data-B (value ?x&greenlred))
=>
(printout t "?x in example2-2 = " ?x crlf))
CLIPS> (reset)
CLIPS> (run)

?x in example2-1 = blue
?X in example2-2 = red
CLIPS>

Example 3

CLIPS> (clear)
CLIPS> (deftemplate data-B (slot value))
CLIPS>
(deffacts AB
(data-A green)

40 Section 5 - Defrule Construct

(data-A blue)
(data-B (value red))
(data-B (value blue)))
CLIPS>
(defrule example3-1
(data-A ?x&~green)
(data-B (value ?y&~?7x))

=>)
CLIPS>
(defrule example3-2
(data-A ?x)
(data-B (value ?x&greenlblue))
=>)
CLIPS>
(defrule example3-3
(data-A ?x)

(data-B (value ?y&bluel?x))
=>)
CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
f-1 (data-A green)
f-2 (data-A blue)
f-3 (data-B (value red))
f-4 (data-B (value blue))
For a total of 5 facts.
CLIPS> (agenda)
7]

example3-3: f-1,f-4
0 example3-3: f-2,f-4
0 example3-2: f-2,f-4
0 example3-1: f-2,f-3
For a total of 4 activations.
CLIPS>

5.4.1.5 Predicate Constraints

Basic Syntax

:<function-call>

CLIPS Basic Programming Guide

CLIPS Reference Manual

Sometimes it becomes necessary to constrain a field based upon the truth of a given boolean
expression. CLIPS allows the use of a predicate constraint to restrict a field in this manner. The
predicate constraint allows a predicate function (one returning the symbol FALSE for
unsatisfied and a non-FALSE value for satisfied) to be called during the pattern-matching
process. If the predicate function returns a non-FALSE value, the constraint is satisfied. If the
predicate function returns the symbol FALSE, the constraint is not satisfied. A predicate
constraint is invoked by following a colon with an appropriate function call to a predicate
function. Typically, predicate constraints are used in conjunction with a connective constraint
and a variable binding (i.e. you have to bind the variable to be tested and then connect it to the
predicate constraint).

41

CLIPS Reference Manual

Syntax
Expanding on the syntax definition given in section 5.4.1.4 now gives:

<term> ::= <constant> |
<single-field-variable> |
<multifield-variable> |
:<function-call>

Multiple predicate constraints may be used to constrain a single field. Several predicate functions
are provided by CLIPS (see section 12.2). Users also may develop their own predicate functions.

Example 1

CLIPS> (clear)

CLIPS>

(defrule example-1
(data ?x&:(numberp ?x))
=>)

CLIPS> (assert (data 1) (data 2) (data red))

<Fact-2>

CLIPS> (agenda)

0 example-1: f-1

7] example-1: -0

For a total of 2 activations.

CLIPS>

Example 2

CLIPS> (clear)

CLIPS>

(defrule example-2
(data ?x&~:(symbolp ?x))
=>)

CLIPS> (assert (data 1) (data 2) (data red))

<Fact-2>

CLIPS> (agenda)

0 example-2: f-1

7] example-2: -0

For a total of 2 activations.

CLIPS>

Example 3

CLIPS> (clear)

CLIPS>

(defrule example-3
(data ?x&:(numberp ?x)&:(oddp ?x))
=>)

CLIPS> (assert (data 1) (data 2) (data red))

<Fact-2>

CLIPS> (agenda)

0 example-3: f-0

For a total of 1 activation.

CLIPS>

Example 4
CLIPS> (clear)

42 Section 5 - Defrule Construct

CLIPS Reference Manual

CLIPS>
(defrule example-4
(data ?y)
(data ?x&:(> ?x ?y))
=>)
CLIPS> (assert (data 3) ; f-0
(data 5) ; f-1
(data 9)) ; f-2
<Fact-2>
CLIPS> (agenda)
0 example-4: f-0,f-2
] example-4: f-1,f-2
0 example-4: f-0,f-1
For a total of 3 activations.
CLIPS>
Example 5
CLIPS> (clear)
CLIPS>

(defrule example-5
(data $?x&:(> (length$?x) 2))
=>)
CLIPS> (assert (data 1) ; -0
(data 1 2) ; f-1
(data 1 2 3)) ; f-2
<Fact-2>
CLIPS> (agenda)
0 example-5: f-2
For a total of 1 activation.
CLIPS>

5.4.1.6 Return Value Constraints

It is possible to use the return value of an external function to constrain the value of a field. The
return value constraint (=) allows the user to call external functions from inside a pattern. (This
constraint is different from the comparison function which uses the same symbol. The difference
can be determined from context.) The return value must be one of the primitive data types. This
value is incorporated directly into the pattern at the position at which the function was called as
if it were a literal constraint, and any matching patterns must match this value as though the rule
were typed with that value. Note that the function is evaluated each time the constraint is
checked (not just once).

Basic Syntax
=<function-call>

Syntax
Expanding on the syntax definition given in section 5.4.1.5 now gives:

<term> ::= <constant> |

<single-field-variable> |
<multifield-variable> |

CLIPS Basic Programming Guide 43

CLIPS Reference Manual

:<function-call> |
=<function-call>

Example 1
CLIPS> (clear)

CLIPS> (deftemplate data (slot x) (slot y))
CLIPS>
(defrule twice

(data (x 7x) (y =(* 2 ?x)))

=)
CLIPS> (assert (data (x 2) (y 4)) ; f-

(data (x 3) (y 9)) ; f-

<Fact-1>

CLIPS> (agenda)

7] twice: -0

For a total of 1 activation.
CLIPS>

0
1

Example 2
CLIPS> (clear)
CLIPS>
(defclass DATA (is-a USER)
(role concrete) (pattern-match reactive)
(slot x (create-accessor write)))
CLIPS>
(defrule return-value-example-2
(object (is-a DATA)
(x ?x1))
(object (is-a DATA)
(x ?x28=(+ 5 ?xD)1=C- 12 ?x1)))

=>)
CLIPS> (make-instance of DATA (x 4))
[genl]
CLIPS> (make-instance of DATA (x 9))
[genZ]
CLIPS> (make-instance of DATA (x 3))
[gen3]
CLIPS> (agenda)
0 return-value-example-2: [gen3], [gen2]
] return-value-example-2: [gen2],[gen3]
0 return-value-example-2: [genl],[gen2]
For a total of 3 activations.
CLIPS>

5.4.1.7 Pattern-Matching with Object Patterns

Instances of user-defined classes in COOL can be pattern-matched on the left-hand side of rules.
Patterns can only match objects for which the object’s most specific class is defined before the
pattern and which are in scope for the current module. Any classes which could have objects
which match the pattern cannot be deleted or changed until the pattern is deleted. Even if a rule
is deleted by its RHS, the classes bound to its patterns cannot be changed until after the RHS
finishes executing.

44 Section 5 - Defrule Construct

CLIPS Reference Manual

When an instance is created or deleted, all patterns applicable to that object are updated.
However, when a slot is changed, only those patterns which explicitly match on that slot are
affected. Thus, one could use logical dependencies to hook to a change to a particular slot (rather
than a change to any slot, which is all that is possible with deftemplates).

Changes to non-reactive slots or instances of non-reactive classes (see sections 9.3.2.2 and
9.3.3.7) will have no effect on rules. Also Rete network activity will not be immediately apparent
after changes to slots are made if pattern-matching is being delayed through the use of the
make-instance, initialize-instance, modify-instance, message-modify-instance,
duplicate-instance, message-duplicate-instance or object-pattern-match-delay functions.

Syntax
<object-pattern>

(object <attribute-constraint>*)

<attribute-constraint> ::= (is-a <constraint>) |
(hame <constraint>) |
(<slot-name> <constraint>*)

The is-a constraint is used for specifying class constraints such as “Is this object a member of
class FOO?”. The is-a constraint also encompasses subclasses of the matching classes unless
specifically excluded by the pattern. The name constraint is used for specifying a specific
instance on which to pattern-match. The evaluation of the name constraint must be of primitive
type instance-name, not symbol. Multifield constraints (such as $?) cannot be used with the is-a
or name constraints. Other than these special cases, constraints used in object slots work
similarly to constraints used in deftemplate slots. As with deftemplate patterns, slot names for
object patterns must be symbols and can not contain any other constraints.

Example 1
The following rules illustrate pattern-matching on an object's class.

(defrule class-match-1
(object)
=)

(defrule class-match-2
(object (is-a F00))
=>)

(defrule class-match-3
(object (is-a FOO | BAR))
=)

(defrule class-match-4
(object (is-a ?x))
(object (is-a ~?x))
=)

CLIPS Basic Programming Guide 45

CLIPS Reference Manual

Rule class-match-1 is satisified by all instances of any reactive class. Rule class-match-2 is
satisfied by all instances of class FOO. Rule class-match-3 is satisfied by all instances of class
FOO or BAR. Rule class-match-4 will be satisfied by any two instances of mutually exclusive
classes.

Example 2
The following rules illustrate pattern-matching on various attributes of an object's slots.

(defrule slot-match-1
(object (width))

=)

(defrule slot-match-2
(object (width 7))
=>)

(defrule slot-match-3
(object (width $?7))
=)

Rule slot-match-1 is satisfied by all instances of reactive classes that contain a reactive width slot
with a zero length multifield value. Rule slot-match-2 is satisfied by all instances of reactive
classes that contain a reactive single or multifield width slot that is bound to a single value. Rule
slot-match-3 is satisfied by all instances of reactive classes that contain a reactive single or
multifield width slot that is bound to any number of values. Note that a slot containing a zero
length multifield value would satisfy rules slot-match-1 and slot-match-3, but not rule
slot-match-2 (because the value's cardinality is zero).

Example 3
The following rules illustrate pattern-matching on the slot values of an object.

(defrule value-match-1
(object (width 10)
=>)

(defrule value-match-2
(object (width ?x&:(> ?x 20)))
=>)

(defrule value-match-3
(object (width ?x) (height ?7x))
=>)

Rule value-match-1 is satisified by all instances of reactive classes that contain a reactive width
slot with value 10. Rule value-match-2 is satisfied by all instances of reactive classes that contain
a reactive width slot that has a value greater than 20. Rule value-match-3 is satisfied by all
instances of reactive classes that contain a reactive width and height slots with the same value.

46 Section 5 - Defrule Construct

CLIPS Reference Manual

5.4.1.8 Pattern-Addresses

Certain RHS actions, such as retract and unmake-instance, operate on an entire pattern CE. To
signify which fact or instance they are to act upon, a variable can be bound to the fact-address
or instance-address of a pattern CE. Collectively, fact-addresses and instance-addresses bound
on the LHS of a rule are referred to as pattern-addresses.

Syntax
<assigned-pattern-CE> ::= ?<variable-symbol> <- <pattern-CE>

The left arrow, <-, is a required part of the syntax. A variable bound to a fact-address or
instance-address can be compared to other variables or passed to external functions. Variables
bound to a fact or instance-address may later be used to constrain fields within a pattern CE,
however, the reverse is not allowed. It is an error to bind a varible to a not CE.

Examples
(defrule dummy
(data 1)
?fact <- (dummy pattern)
=>
(retract ?fact))

(defrule compare-facts-1
?fl <- (color ~red)
?7f2 <- (color ~green)
(test (neq ?f1 7f2))
=>
(printout t "Rule fires from different facts" crlf))

(defrule compare-facts-2
?fl <- (color ~red)
?7f2 <- (color ~green&:(neq ?fl ?7f2))
=>
(printout t "Rule fires from different facts" crlf))

(defrule print-and-delete-all-objects
?ins <- (object)
=>
(send ?ins print)
(unmake-instance ?ins))

5.4.2 Test Conditional Element

Field constraints used within pattern CEs allow very descriptive constraints to be applied to
pattern-matching. Additional capability is provided with the test conditional element. The test
CE is satisfied if the function call within the test CE evaluates to a non-FALSE value and
unsatisfied if the function call evaluates to FALSE. As with predicate constraints, the user can
compare the variable bindings that already have occurred in any manner. Mathematical
comparisons on variables (e.g., is the difference between ?x and ?y greater than some value?)

CLIPS Basic Programming Guide 47

CLIPS Reference Manual

and complex logical or equality comparisons can be done. External functions also can be called
which compare variables in any way that the user desires.

Any kind of external function may be embedded within a test conditional element (or within
field constraints). User-defined predicate functions must take arguments as defined in the
Advanced Programming Guide. Several predicate functions are provided by CLIPS (see section
12.1).

Syntax
<test-CE> ::= (test <function-call>)

Since the symbol test is used to indicate this type of conditional element, rules may not use the
symbol test as the first field in a patte