Liquidsoap 0.3.6 user’s guide.

Built using online documentation available at http://savonet.sf.net on Dec, 17 2007.

David Baelde Samuel Mimram Romain Beauxis Vincent Tabard

February 7, 2008

http://savonet.sf.net

Contents

1

Liquidsoap 5
1.1 Liquidsoap o o oo e 5
1.1.1 Features o . o e e 5
1.1.2 Non-Features 6
1.2 Imstallation e 7
1.2.1 Imstall from source tarballs, 7
1.2.2 Subversion repository (and other distributions) 8
1.2.3 Debian. e 8
1.2.4 Ubuntu source install 8
1.25 Gentoo 8
1.2.6 OSX . . . e 8
1.3 Installation on an Ubuntu system 8
1.3.1 Knownbugs. 10
1.4 Quickstart 10
1.4.1 The Internet radio toolchain 10
1.4.2 Starting to use Liquidsoap 11
1.4.3 One-line expressions o e 12
1.4.4 Scriptfiles. e 13
1.4.5 Asimpleradio 13
1.4.6 What’s next? 14
1.5 A complete case analysis L L 14
1.6 Advanced techniques 16
1.6.1 Interaction with the server L. 16
1.6.2 Daemon mode e 17
1.7 Concepts o . e 17
171 Sources e 17
1.7.2 Execution model L 18
1.7.3 An abstract notion of files: requests L. 19
1.8 Liquidsoap’s scripting languageo Lo 20
1.8.1 Constants L 20
1.8.2 EXpPressions e e e 20
1.8.3 Types . . . o o o e 21
1.8.4 Time intervals 22
1.8.5 Includes o 22
1.9 Liquidsoap settings e e 22
1.10 Cookbook e 23
1.10.1 Files o e 23
1.10.2 Transcoding e 23
1.10.3 Scheduling e 24
1.10.4 Force a file/playlist to be played at least every XX minutes 24
1.10.5 Handle special events: mix or switch 24
1.10.6 Unix interface, dynamic requests Lo 24

3

CONTENTS

1.10.7 Dynamic input with harbor o000 25
1.10.8 Lastfm input 26
1.10.9 Transitions e e 26
1.10.10 Alsa unbuffered outputo 28
1.11 Frequently Asked Questions 29
1.11.1 Istarted receiving this log on my streams: We must catchup 0.44 seconds
(we’ve been late for 100 rounds)! What does it mean? 29
Advanced topics 31
2.1 Blank detection 31
2.2 Distributed encoding Lo 32
Other tools 33
3.1 Bubble. . . .o 33
3.2 Bottle 33
Reference 35
4.1 Source /Input 35
4.1.1 blank 35
4.1.2 input.alsao 35
4.1.3 input.harbor 35
4.1.4 input.http 36
4.1.5 dnputdastfmo oL 36
4.1.6 INput.oSS L e e e 36
4.1.7 input.portaudio Lo oL 36
4.1.8 MOISE .« v vt e e 36
4.1.9 playlisto 37
4.1.10 playlist.safe 0oL 37
4.1.11 request.dynamic Lo 37
4.1.12 request.equeue Lo e e e 38
4.1.13 request.qUeue e e e 38
4114 SaW . . L oL e 38
4.1.15 sine . . .o 39
4.1.16 single L. 39
4117 square Lo e e e 39
4.2 Source / Output 39
4.2.1 output.alsao 39
4.22 output.ao 40
4.2.3 output.dummy 40
4.2.4 output.file.vorbis Lo 40
4.2.5 output.file.vorbis.abr 41
4.2.6 output.file.vorbis.cbr oL Lo 41
4.2.7 outputfilewav 42
4.2.8 output.cecast.vorbis L Lo 42
4.2.9 output.cecast.vorbis.abr Lo o 43
4.2.10 output.icecast.vorbis.cbr oo oo 44
4.2.11 output.oSSo e e e 45
4.2.12 output.portaudio oL Lo 45
4.3 Source / Sound Processing Lo 45
4.3.1 accelerate 45
432 add ... 45
4.3.3 amplify . .. oL 46
4.3.4 Dbpm . ..o 46

4.3.5 clip ... 46

CONTENTS 5
4.3.6 comb e e 46
4.3.7 compand Lo 46
4.3.8 COMPIESS .« . v v v v vt et e e e e e e 47
4.3.9 compress.exponentialo Lo oL 47
4310 CTOSS « « v v v e e e 47
4.3.11 echo e 48
4.3.12 fade.final 48
4.3.13 fadedn Lo 48
4.3.14 fade.nitial oL 48
4.3.15 fade.out 49
4.3.16 filter L 49
4.3.17 filter.fir . . . L. L e e 49
4.3.18 filter.iir.butterworth.bandpass L. 49
4.3.19 filter.iir.butterworth.bandstopo oo 50
4.3.20 filter.iir.butterworth.high o 0L 50
4.3.21 Afilterdir.butterworth.low L o 50
4.3.22 filter.dir.eq.allpass 51
4.3.23 filter.ir.eq.bandpass 51
4.3.24 filterdir.eq.higho 51
4.3.25 filter.ir.eq.highshelf L o o 51
4.3.26 filterdir.eqlowo L 52
4.3.27 filter.ir.eq.lowshelf 52
4.3.28 filter.ir.eq.notch L 52
4.3.29 filteridir.eq.peak Lo 52
4.3.30 filter.iir.resonator.bandpass Lo L Lo 53
4.3.31 flangero e 53
4.3.32 insert_metadata Lo L e 53
4.3.33 lmit e e 53
4.3.34 meano 54
4.3.35 MmiX ... 54
4.3.36 normalize L Lo e 54
4.3.37 PAN . .o e e e e e 55
4.3.38 SMart_Cross i e e e e e e e e e 55
4.3.39 soundtouch 56
4.3.40 SWAD . . . b e 56

4.4 Source / Track Processing L o6
4.4.1 append e 56
4.42 delay 56
4.4.3 eat.blank 57
4.44 fallback 57
4.45 onblanko 57
446 onmetadata L Lo 57
4.4.7 ontrack ... e 58
4.4.8 prepend e 58
4.4.9 random e e 58
4.4.10 rewriteometadata oL Lo 59
4411 seqUenceo e e e e 59
4.4.12 skip-blanko Lo 59
4.4.13 storemetadata 59
4.4.14 strip_blank 60
4.4.15 switch oL 60

4.5 Source / Visualization L L o 60
451 vumeter 60

4.6 Bool e e 60

4.7

4.8

4.9

4.10

4.11

4.12

CONTENTS

4.6.1 = 60
4.6.2 < L e 61
4.6.3 <= . e 61
4.6.4 == . e 61
4.6.5 > e e 61
4.6.6 = L e e e e e e 61
4.6.7 and ... 61
4.6.8 MOL e 61
4.6.9 OT . .o e e e e e e e e e e e e 61
4.6.10 random.bool e 61
Control e 61
4.7.1 add_timeouto 61
472 1gnore ... 62
Interaction L e e e 62
4.8.1 interactive_float 62
4.8.2 print . ..o e e 62
Liquidsoap o e e 62
4.9.1 add_protocol 62
4.92 get ..o 62
4.9.3 request ... e 62
4.9.4 set ... e e e 62
4.9.5 shutdown e e 62
4.9.6 sourcedd 62
4.9.7 source.sskip 62
List . o e 63
4101 [oo 63
4.10.2 list.fold e 63
4.10.3 list.hd 63
4.10.4 list.dter e 63
4.10.5 listlength oL 63
4.10.6 list.mapo e 63
4.10.7 list.mem oL e e e e 63
4.10.8 List.nth e 63
4.10.9 list.tl. . . o e 63
Math e 63
4111 % e 63
4.11.2 4 e e 64
4113 = e e e e 64
O 64
4.11.5 abs 64
4.11.6 boolof float 64
4.11.7 booloofint L e e 64
4.11.8 dB.oflin e e 64
4.11.9 float_ofdnt L 64
4.11.10int_of float 64
4.11.111nof dAB 64
AAL2POW . . o e e e 64
4.11.13random.float 65
String e 65
4.12.1 % .o 65
4.12.2 7 e 65
4.12.3 boolofstring 65
4.12.4 float_ofstring 65

4125 int_ofstringo 65

CONTENTS 7

4.13

4.12.6 qUOteo e 65
4.12.7 string.concat Lo 65
4.12.8 string.split 65
4.12.9 stringof 65
System 66
4131 argv . ..o 66
4.13.2 eXeCute e e 66
4.13.3 get_process_lines L 66
4.13.4 get_process_output Lo 66
4135 log 66
4.13.6 onshutdown 66
4.13.7 shutdown 66

4.13.8 system 66

CONTENTS

Chapter 1

Liquidsoap

1.1 Liquidsoap

Liquidsoap is a powerful tool for building complex audio stream generators, typically targetting
internet radios. It consists of a simple script language, which has a first-class notion of source
(basically a stream) and provides elementary source constructors and source compositions from
which you can build the streamer you want. This design makes liquidsoap flexible and easily
extensible.

We believe that liquidsoap is easy to use. For basic purposes, the scripts simply consists of
the definition of a tree of sources. It is good to use liquidsoap even for simple streams which
could be produced by other tools, because it is extensible: when you want to make your stream
more complex, you are still able to stay in the same framework, and your script will remain
maintainable. Of course, this will require at some point a deeper understanding of liquidsoap’s
concepts and scripting language.

If you’re new to liquidsoap, you’d probably like to read about the installation procedure and
take the quickstart tour. Then you may also enjoy to learn more about the main concepts on
which liquidsoap is built. When you’ll master the basics, you'll only need to take a look at the
reference (scripting language, API and settings) and get a few ideas from the recipes to be able
to design whatever stream you need. Finally, have a look at the telnet tutorial to find out how to
interact in various ways with a running liquidsoap.

Liquidsoap is open-source, written in OCaml and is part of the savonet project.

Acknowledgement for the readers of the PDF version. The file you're reading has been
automatically generated from savonet’s wiki. It can be useful to get directly there, in particular
if you need to copy a code snippet: http://savonet.sf.net/wiki/Liquidsoap.

Acknowledgement for the Wiki readers. There is a PDF file automatically generated from
selected pages of this wiki. It can be useful for printing, and is available in liquidsoap distribution.
Also, beware that this site may contain information that is only relevant for development versions
of liquidsoap.

1.1.1 Features

Here are a few things you can easily achieve using Liquidsoap:

Playing from files, playlists, directories or script playlists (plays the file chosen by an external
program).

e Transparent remote file access; easy addition of file resolution protocols.

Scheduling of many sources, depending on time, priorities, quotas, etc.

e Mixing one source on top of the other.

http://savonet.sf.net/wiki/Liquidsoap

10 CHAPTER 1. LIQUIDSOAP

Queuing of user requests; editable queues.
e Sound processing: compress, compand, normalize, echo, soundtouch, etc.
e Supports arbitrary transitions: you can have fade, cross-fade, jingle insertion, etc.

e Per-track settings of transitions via metadata 1iq_fade_in, 1iq_fade_out, liq_start_next,
liq_append and liq_prepend.

e Highly customizable smart cross-fading based on audio intensity analysis.

e Input of other streams (Vorbis, MP3 and AAC over HTTP): useful for switching to a live
show.

e Blank detection.
e Definable event handlers on new tracks, new metadata and excessive blank.
e Metadata rewriting and insertion.

e Multiple outputs in the same instance: you can have several quality settings, use several
media or even broadcast several contents from the same instance.

e QOutput to icecast and peercast (mp3/ogg) or a local file (wav/mp3/ogg).
e Output to speakers using libao.

e Output to ALSA speaker, input from ALSA microphone.

e Distributed encoding using RTP (still very experimental)!

e Interactive control of many operators via telnet and UNIX domain socket, or indirectly using
perl/python scripts, pyGtk GUI, web/irc interfaces (not released, mail us). ..

e Speech and sound synthesis.

If you need something else, it’s highly possible that you can have it — at least by programming
new sources/operators. Send us a mail, we’ll be happy to discuss these questions.

1.1.2 Non-Features

Liquidsoap is a flexible tool for processing audio streams, that’s all. We have used it for several
internet radio projects, and we know that this flexibility is useful. However, an internet radio
usually requires more than just an audio stream, and the other components cannot easily be built
from basic primitives as we do in liquidsoap for streams. We don’t have any magic solution for
these, although we sometimes have some nice tools which could be adapted to various uses.

Liquidsoap itself doesn’t have a nice GUI or any graphical programming environment. You’ll
have to write the script by hand, and the only possible interaction with a running liquidsoap is
the telnet server. However, we have modules for various languages (OCaml, Ruby, Python, Perl)
providing high-level communication with liquidsoap. And there is a graphical application using
the Python module for controlling a running liquidsoap: liguidsoap.

Liquidsoap doesn’t do any database or website stuff. It won’t index your audio files, it won’t
allow your users to score songs on the web, etc. However, liquidsoap makes the interfacing with
other tools easy, since it can call an external application (reading from the database) to get audio
tracks, another one (updating last-played information) to notify that some file has been successfully
played. The simplest example of this is bubble, RadioPi also has a more complex system of its
own along these lines.

1.2. INSTALLATION 11

1.2 Installation

Several ways of installing liquidsoap are possible.

The recommended way for newcomers is to use the liquidsoap-full-xxx.tar.gz tarball. This
tarball includes all required OCaml bindings and allows you to compile and install liquidsoap in a
single configure, make and make install procedure. You will still need the coresponding C libraries
and there developement files, though.

For more advanced users, you can choose which features you want. Here are liquidsoap’s
dependencies (all OCaml libraries are distributed by Savonet, except Camomile):

e ocamlfind (http://www.ocaml-programming.de/programming/findlib.html)

e ocaml-dtools
And also optional dependencies:

e ocaml-ogg

e ocaml-shout

e ocaml-vorbis

e ocaml-shout

e ocaml-mad for mp3 decoding

e libid3tag (http://www.underbit.com/products/mad/) for reading mp3’s id3 metadata
e ocaml-mp3id3 for reading mp3’s id3 metadata

e camomile (http://camomile.sourceforge.net/) for detecting metadata encodings and re-
encoding them to utf8

e ocaml-lame for mp3 encoding
e ocaml-alsa for alsa input/output
e libortp (http://www.linphone.org/) for RTP input/output

e wget (http://www.gnu.org/software/wget/) for downloading remote files (http, https,
ftp)

e ufetch (provided by ocaml-fetch) for downloading remote files (smb, http, ftp)

o festival (http://www.cstr.ed.ac.uk/projects/festival/) for speech synthesis (say)

And other that you’ll find on the project page, or in liquidsoap-full tarball.

1.2.1 Install from source tarballs

The primary mean of stable distribution is source tarballs. They are available on the download
section (http://sourceforge.net/project/showfiles.php?group_id=89802) of the project’s
page on sourceforge. They all follow the GNU conventions, and are built and installed using the
common ./configure, make and make install.

http://www.ocaml-programming.de/programming/findlib.html
http://www.underbit.com/products/mad/
http://camomile.sourceforge.net/
http://www.linphone.org/
http://www.gnu.org/software/wget/
http://www.cstr.ed.ac.uk/projects/festival/
http://sourceforge.net/project/showfiles.php?group_id=89802

12 CHAPTER 1. LIQUIDSOAP

1.2.2 Subversion repository (and other distributions)

If you want a cutting-edge version, you can use the subversion repository. To get a copy of it, just
run:

svn co https://savonet.svn.sourceforge.net/svnroot/savonet/trunk savonet

From every sub-project’s directory you can build and install the package using ./bootstrap,
./configure, make and optionally make install.

From the toplevel savonet directory you can also directly build a vanilla liquidsoap. It’s fast
and doesn’t require you to install the libraries. The steps to follow are simple:

Edit PACKAGES to choose which feature you want

./bootstrap

./configure

make

To install liquidsoap, you’ll usually need to type the following as root
make install

1.2.3 Debian

Debian packages are available on the official repository for testing and unstable.
We are working on backported packages for debian stable (etch).

1.2.4 Ubuntu source install

You can find more informations on how to install LiquidSoap from source (Subversion) on the
Ubuntu page.

1.2.5 Gentoo

You can find more informations on how to install LiquidSoap on the Gentoo page.

1.2.6 OSX

There have been successful installations on OSX (both Intel and PPC), using Fink and the Godi
distribution of OCaml. Claudio reports his two successes on the OSX page.

1.3 Installation on an Ubuntu system

Be careful that this will not work on an Ubuntu system anterior to Edgy Eft (Ubuntu
6.10) because of uncompatible Camomile versions. If you really want to get this working, you
can follow the instructions for compiling ocaml in the ” Compiling ocaml from source” in Installa-
tionDebian

To install the required dependencies type:

sudo apt-get install ocaml ocaml-base ocaml-base-nox ocaml-tools ocaml-nox ocaml-findlib
libpcre-ocaml libpcre-ocaml-dev libcamomile-ocaml-dev wget \
subversion automakel.9 autoconf make gcc

Optional dependencies:
All optional dependencies are installed using their developpement packages. Beware that names
may change, but you can easily check them with apt-cache search:

1.3. INSTALLATION ON AN UBUNTU SYSTEM 13

’apt—cache search lib-name dev ‘

’sudo apt-get install festival libxml-dom-perl tetex-extra python-gtk2-dev python python—s%pport

For Alsa:

sudo apt-get install libasound-dev ‘

For Ogg Vorbis:

sudo apt-get install libvorbis-dev libogg-dev ‘

For Shout (Ogg streaming):

’sudo apt-get install libshout3-dev ‘

For Lame (MP3 encoding - you need the multiverse APT repository):

’sudo apt-get install liblame-dev ‘

For Mad (MPEG 1 Layer II/IIT decoding):

’sudo apt-get install libmadO-dev ‘

For AO:

’sudo apt-get install libao-dev ‘

For RTP:

’sudo apt-get install libortp4-dev ‘

or (starting from Feisty):

’sudo apt-get install libortp5-dev ‘

Then checkout the latest SVN version:

’svn co https://savonet.svn.sourceforge.net/svnroot/savonet/trunk savonet ‘

Edit savonet/PACKAGES and select the packages you want to compile.
Compile it:

cd savonet
./bootstrap && ./configure && make

14 CHAPTER 1. LIQUIDSOAP

WEBRADIO STREAMING LISTENERS

_
L
.

SERVER

I

a | |
1 stream
—_—
f—

Figure 1.1: Internet radio toolchain

1.3.1 Known bugs

Some camomile packages are broken on Ubuntu — the latest at the time of writing this line.
If your file /usr/lib/ocaml/*/camomile/META (where * is your version of ocaml) is empty or
non-existent, fill it with the following lines:

name="camomile"

version="0.6.3"

description="Unicode library for ocaml"
requires="bigarray"
archive(byte)="camomile.cma"
archive(native)="camomile.cmxa"

1.4 Quickstart

1.4.1 The Internet radio toolchain

Liquidsoap is a general audio stream generator, but is mainly intended for Internet radios. Before
starting with the proper Liquidsoap tutorial let’s describe quickly the components of the internet
radio toolchain, in case the reader is not familiar with it.

The chain is made of:

e the stream generator (Liquidsoap, ices (http://www.icecast.org/ices.php), or for exam-
ple a DJ-software running on your local PC) which creates an audio stream (Ogg Vorbis or
MP3);

e the streaming media server (Icecast (http://www.icecast.org), Shoutcast (http://www.
shoutcast.com), ...) which relays several streams from their sources to their listeners;

e the media player (xmms, Winamp, ...) which gets the audio stream from the streaming
media server and plays it to the listener’s speakers.

The stream is always passed from the stream generator to the server, whether or not there are
listeners. It is then sent by the server to every listener. The more listeners you have, the more
bandwidth you need.

http://www.icecast.org/ices.php
http://www.icecast.org
http://www.shoutcast.com
http://www.shoutcast.com

1.4. QUICKSTART 15

8 % I I W
o e

If you use Icecast, you can broadcast more than one audio feed using the same server. Each
audio feed or stream is identified by its ”mount point” on the server. If you connect to the foo.ogg
mount point, the URL of your stream will be http://localhost:8000/fo0.0gg — assuming that
your Icecast is on localhost on port 8000. If you need further information on this you might
want to read Icecast’s documentation (http://www.icecast.org). A proper setup of a streaming
server is required for running savonet.

Now, let’s create an audio stream.

1.4.2 Starting to use Liquidsoap

In this tutorial we assume that you have a fully installed Liquidsoap. In particular the library
utils.liq should have been installed, otherwise Liquidsoap won’t know the operators which
have been defined there. If you installed into the default /usr/local you will find it inside
/usr/local/lib/liquidsoap/.

Sources

A stream is built with Liquidsoap by using or creating sources. A source is an annotated audio
stream. In the following picture we represent a stream which has at least three tracks (one of
which starts before the snapshot), and a few metadata packets (notice that they do not necessarily
coincide with new tracks).

In a Liquidsoap script, you build source objects. Liquidsoap provides many functions for
creating sources from scratch (e.g. playlist), and also for creating complex sources by putting
together simpler ones (e.g. switch in the following example). Some of these functions (typically
the output.*) create an active source, which will continuously pull its children’s stream and
output it to speakers, to a file, to a streaming server, etc. These active sources are the roots of a
Liquidsoap instance, the sources which bring life into it.

That source is fallible! There may always be errors with your streaming setup. If your source
consists of a playlist, this playlist might not be able to find the files it contains because you put
them at a wrong place. Liquidsoap also offers you a way to broadcast files from remote places.
This remote connection might be broken at the time Liquidsoap expects it to be available.

In Liquidsoap, we say that a source is infallible if it will be always available. Otherwise, it is
fallible. A playlist is fallible because it does not check its files in advance, and because files can be
remote. A user request queue is an other example of fallible source. If file.ogg is a valid local
file, then single("file.ogg") will be an infallible source. You can also build infallible playlists
by using the playlist.safe function; it will then check all files at startup, and won’t accept
remote files.

Liquidsoap checks that the child of an output is infallible, so that you can trust your output.
The function mksafe takes a source and returns an infallible source, by streaming silence when
the input stream becomes unavailable. The default speaker output out actually uses mksafe in
its definition. For other outputs, we ask the user to explicitly write the fallback method, if one
is needed. You can use mksafe (especially if you trust that your theoretically fallible source will

http://localhost:8000/foo.ogg
http://www.icecast.org

16 CHAPTER 1. LIQUIDSOAP

never fail in practice), but there are other methods for dealing with failures, e.g. playing a default
file:

fallback([put_your_source_here, single("failure.ogg")])

Note: this strict behaviour may change in the future.

1.4.3 One-line expressions

Liquidsoap is a scripting language. Many simple setups can be achieved by evaluating one-line
expressions.

Playlists

In the first example we’ll play a playlist. Let’s put a list of audio files in playlist.pls: one
filename per line, lines starting with a # are ignored. You can also put remote files” URLs, if
your Liquidsoap has support for the corresponding protocols. You can also use a directory name
instead of a playlist, and Liquidsoap will recursively look for audio files in it. Then just run:

liquidsoap ’out(playlist("playlist.m3u"))’

(Although full M3U format should be supported by Liquidsoap, we advise you to use the much
simpler one-file-per-line format.)

Depending on your configuration, the output out will use AO, Alsa or OSS, or won’t do
anything if you do not have support for these libs. In that case, the next example is for you.

Streaming out to a server

Liquidsoap is capable of playing audio on your speakers, but it can also send audio to a streaming
server such as Icecast or Shoutcast. You can choose between two widespread audio codecs: MP3
and Ogg Vorbis. One instance of Liquidsoap can stream one audio feed in many formats (and
even many audio feeds in many formats!).

You may already have an Icecast server. Otherwise you can install and configure your own
Icecast server. The configuration typically consists in setting the admin and source passwords, in
/etc/icecast2/icecast.xml. These passwords should really be changed if your server is visible
from the hostile internet, unless you want people to kick your source as admins, or add their own
source and steal your bandwidth.

We are now going to send an audio stream, encoded as Ogg Vorbis, to an Icecast server:

liquidsoap ’output.icecast.vorbis(host = "localhost", port = 8000, \
password = "hackme", mount = "liq.ogg", \
mksafe(playlist("playlist.m3u")))’

The main difference with the previous is that we used output.icecast.vorbis instead of out.
The second difference is the use of the mksafe which turns your fallible playlist source into an
infallible source.

Streaming to Shoutcast is quite similar, using the output.shoutcast.mp3 function:

liquidsoap ’output.shoutcast.mp3(host="localhost", port = 8000, \
password = "changeme", \
mksafe(playlist("playlist.m3u")))’

1.4. QUICKSTART 17

Input from another streaming server

Liquidsoap can use another stream as an audio source. This may be useful if you do some live
shows.

liquidsoap ’out(input.http("http://dolebrai.net:8000/dolebrai.ogg"))’

Input from the soundcard

If you're lucky and have a working ALSA support, try one of these... but beware that ALSA
may not work out of the box.

liquidsoap ’output.alsa(input.alsa())’
liquidsoap ’output.alsa(bufferize = false, input.alsa(bufferize = false))’

Other examples

You can play with many more examples. Here are a few more. To build your own, lookup the
API documentation to check what functions are available, and what parameters they accept.

Listen to your playlist, but normalize the volume

liquidsoap ’out(normalize(playlist("playlist_file")))’

... same, but also add smart cross-fading

liquidsoap ’out(smart_crossfade(normalize(playlist("playlist_file"))))’

1.4.4 Script files

We have seen how to create a very basic stream using one-line expressions. If you need something

a little bit more complicated, they will prove uneasy to manage. In order to make your code more

readable, you can write it down to a file, named with the extension .1iq (eg: myscript.liq).
To run the script:

lliquidsoap myscript.liq ‘

On UNIX, you can also put #!/path/to/your/liquidsoap as the first line of your script
(”shebang”). Don’t forget to make the file executable:

’chmod u+x myscript.liq ‘

Then you’ll be able to run it like this:

’./myscript.liq

Usually, the path of the Liquidsoap executable is /usr/bin/liquidsoap, and we’ll use this in
the following.

1.4.5 A simple radio

We will start with a basic radio station, that plays songs randomly chosen from a playlist, adds
a few jingles (more or less one every four songs), and output an Ogg Vorbis stream to an Icecast
server.

Before reading the code of the corresponding liquidsoap script, it might be useful to visualize
the streaming process with the following tree-like diagram. The idea is that the audio streams
flows through this diagram, following the arrows. In this case the nodes (fallback and random)
select one of the incoming streams and relay it. The final node output.icecast.vorbis is an
output: it actively pulls the data out of the graph and sends it to the world.

18 CHAPTER 1. LIQUIDSOAP

playlist{myplaylist)

T
random
" - Hﬁ“‘“—\-\.
— \‘_‘_‘_
.--""f- : S,
playlist(jingles) fallback —— output icecast . vorbis
Ey
.-"'--.
ginglel security)

Figure 1.2: Graph for 'basic-radio.liq’

#!/usr/bin/liquidsoap

Log dir
set("log.file.path","/tmp/basic-radio.log")

Music

myplaylist = playlist("~/radio/music.m3u")

Some jingles

jingles = playlist("~/radio/jingles.m3u")

If something goes wrong, we’ll play this
security = single("~/radio/sounds/default.ogg")

Start building the feed with music

radio = myplaylist

Now add some jingles

radio = random(weights = [1, 4], [jingles, radiol)

And finally the security

radio = fallback(track_sensitive = false, [radio, security])

Stream it out
output.icecast.vorbis(host = "localhost", port = 8000, password = "hackme",
mount = "basic-radio.ogg", radio)

1.4.6 What’s next?

You can first have a look at a more complex example. There is also a second tutorial about
advanced techniques.

You should also learn more about Liquidsoap’s scripting language. Once you’ll know the syntax
and types, you'll probably need to refer to the scripting reference and the settings reference, or
see examples. For a better understanding of Liquidsoap, it is also suggested to read more about
the concepts of the system.

1.5 A complete case analysis
We will develop here a more complex example, according to the following specifications:

e play different playlists during the day;

e play user requests — done via the telnet server;

1.5. A COMPLETE CASE ANALYSIS 19

day request.queine Jingles inpul.hitp oulpul icecast anpd
-~ - z

- - e
~ ~— e —— -
- — “\._\ S o
T S T —
suwitch —— fallback —— random add - fallback
T 4 ~— —
T / 7 T T
- T - "““'-«._\ -hh

night de faunlt clock output iceeast vorbis output.icecast. vorbis

Figure 1.3: Graph for ’radio.liq’

e insert about 1 jingle every 5 songs;
e add one special jingle at the beginning of every hour, mixed on top of the normal stream;
e relay live shows as soon as one is available;

e and set up several outputs.

Once you've managed to describe what you want in such a modular way, you’re half the way.
More precisely, you should think of a diagram such as the following, through which the audio
streams flow, following the arrows. The nodes can modify the stream using some basic operators:
switching and mixing in our case. The final nodes, the ends of the paths, are outputs: they are
in charge of pulling the data out of the graph and send it to the world. In our case, we only have
outputs to icecast, using two different formats.

Now here is how to write that in Liquidsoap.

#!/usr/bin/liquidsoap
Lines starting with # are comments, they are ignored.

Put the log file in some directory where you have the write permission
set("log.file.path","/tmp/<script>.log")

Print log messages to the console, this can also be done by passing the -v option to 1i
set("log.stdout", true)

Use the telnet server for requests

set ("server.telnet", true)

A bunch of files and playlists,
supposedly all located in the same base dir.

default = single("~/radio/default.ogg")

day = playlist("~/radio/day.pls")
night = playlist(""/radio/night.pls")
jingles = playlist("~/radio/jingles.pls")

clock = single(""/radio/clock.ogg")
start = single("”/radio/live_start.ogg")
stop = single("~/radio/live_stop.ogg")

Play user requests if there are any,

otherwise one of our playlists,

and the default file if anything goes wrong.

radio = fallback([request.queue(id="request"),
switch([({ 6h-22h }, day),

({ 22h-6h }, night)]),

default])

Add the normal jingles

radio = random(weights=[1,5],[jingles, radio])

quidsoap

20 CHAPTER 1. LIQUIDSOAP

And the clock jingle
radio = add([radio, switch([({OmOs},clock)])])

Add the ability to relay live shows

full = fallback(track_sensitive=false,
[input.http("http://localhost:8000/1ive.ogg"),
radio])

Output the full stream in 0GG and MP3
output.icecast.mp3(host="localhost",port=8000,password="hackme",
mount="radio",full)
output.icecast.vorbis(host="localhost",port=8000,password="hackme",
mount="radio.ogg",full)

Output the stream without live in 0GG
output.icecast.vorbis(host="localhost",port=8000,password="hackme",
mount="radio_nolive.ogg",radio)

To try this example you need to edit the file names. In order to witness the switch from one
playlist to another you can change the time intervals. If it is 16:42, try the intervals Oh-16h45
and 16h45-24h instead of 6h-22h and 22h-6h. To witness the clock jingle, you can ask for it to
be played every minute by using the Os interval instead of OmOs.

To try the transition to a live show you need to start a new stream on the live.ogg mount
of your server. You can send a playlist to it using the first example. To start a real live show you
can use darkice, or simply Liquidsoap if you have a working ALSA input, with:

liquidsoap ’output.icecast.vorbis(mount="1live.ogg",host="...",password="...",input.alsa()]’

1.6 Advanced techniques

1.6.1 Interaction with the server

To enable the telnet server, set server.telnet = true (or use the -t option).

In ”A Complete Case Analysis” we set up a request.queue source to play user requests. To
push requests in that queue you need to interact with the telnet server, which also provides many
other services. By default it is only accessible from the host where Liquidsoap runs. You can learn
more on that topic with the telnet tutorial and settings description. Here is a sample session:

dbaelde@selassie:~$ telnet localhost 1234
Trying 127.0.0.1...

Connected to localhost.localdomain.
Escape character is ’7]°.
request.push /path/to/some/file.ogg
5

END

metadata 5

[...]

END

request.push http://remote/audio.ogg
6

END

trace 6

[...]

END

help

[...]

1.7. CONCEPTS 21

END
exit

Of course, telnet isn’t user friendly. But it is easy to write scripts to interact with Liquidsoap
in that way. Examples of such tools are liguidsoap and bottle.

1.6.2 Daemon mode

The full installation of Liquidsoap will typically install /etc/liquidsoap,
/etc/init.d/liquidsoap and /var/log/liquidsoap. All these are meant for a particu-
lar usage of Liquidsoap when running a stable radio.

Your .1liq files should go in /etc/liquidsoap. You’ll then start/stop them using the init
script: /etc/init.d/liquidsoap start. Your scripts don’t need to have the #! line. Liquidsoap
will automatically be ran on daemon mode (-d option) for them.

You should not override the log.file.path, because a logrotate configuration is also installed
so that log files in the standard directory are truncated and compressed if they grow too big.

It is not very convenient to detect errors when using the init script. We advise users to first
check their modified scripts using liquidsoap --check /etc/liquidsoap/script.liq before
effectively restarting the daemon.

1.7 Concepts

1.7.1 Sources

Using liquidsoap is about writing a script describing how to build what you want. It is about
building a stream using elementary streams and stream combinators, etc. Actually, it’s a bit more
than streams, we call them sources — in liquidsoap’s code there is a Source.source type, and in
x.1iq scripts one of the elementary datatypes is source.

A source is a stream with metadata and track annotations. It is discretized as a stream of
fixed-length buffers of raw audio, the frames. Every frame may have metadata inserted at any
point, independently of track boundaries. At every instant, a source can be asked to fill a frame
of data. Track boundaries are denoted by a single denial of completely filling a frame. More than
one denial is taken as a failure, and liquidsoap chooses to crash in that case.

To build sources in liquidsoap scripts, you need to call functions which return type is source.
For convenience, we categorize these functions into three classes. The sources (sorry for redun-
dancy, poor historical reasons) are functions which don’t need a source argument — we might call
them elementary sources. The operators need at least one source argument — they’re more about
stream combination or manipulation. Finally, some of these are called outputs, because they are
active operators (or active sources in a few cases): at every instant they will fill their buffer and
do something with it. Other sources just wait to be asked (indirectly or not) by an output to fill
some frame.

All sources, operators and outputs are listed in the scripting API reference.

How does it work?

To clarify the picture let’s study in more details an example.

radio = output.icecast(
mount="test.ogg",
random([jingle , fallback([playlistl , playlist2 , playlist3 1)1)
)

At every tick, the output asks the "random” node for data, until it gets a full frame of raw
audio. Then it encodes it, and sends it to the Icecast server. Suppose "random” has chosen the

22 CHAPTER 1. LIQUIDSOAP

”fallback” node, and that only ”playlist2” is available, and thus played. At every tick, the buffer is
passed from "random” to ”fallback” and then to ”playlist2”, which fills it, returns it to ”fallback”,
which returns it to "random”, which returns it to the output. Every step is local.

At some point, "playlist2” ends a track. The ”fallback” detects that on the returned buffer,
and selects a new child for the next filling, depending on who’s available. But it doesn’t change
the buffer, and returns it to "random”, which also selects a new child, randomly, and return the
buffer to the output. On next filling, the route of the frame can be different.

It is possible to have the route changed inside a track, for example using the track_sensitive
option of fallback, which is typically done for instant switches to live shows when they start.

Fallibility

Outputs expect their input source to never fail, so that the stream never ends. Liquidsoap has a
mechanism to verify this, and helps you think of all possible failures, and prevent them. Elementary
sources are either fallible or infallible, and this liveness type is propagated through operators to
finally compute the type of any source. A fallback or random source is infallible if and only if
at least one of their children is infallible. A switch is infallible if and only if it has one infallible
child guarded by the trivial predicate true . And so on.

On startup, outputs will check the liveness type of their input sources, and you’ll get an error if
one of these is fallible. The common answer to such errors is op add one fallback to play a default
file or a checked playlist (playlist.safe) if the normal source fails. Often, the error is excessive,
it simply means that your (unchecked) playlists could all be corrupted, which is unlikely. But
sometimes, it also helps one to avoid the case where a playlist fails because it spent too much time
trying to download remote files.

Caching mode

In some situations, a source must take care about the consistency of its output. If it is asked
twice to fill buffers during the same time tick, it should fill them with the same data. Suppose
for example that a playlist is listened by two outputs, and that it gives the first frame to the first
output, the second frame to the second output: it would give the third frame to the first output
during the second tick, and the output will have missed one frame.

Keeping that in mind is required to understand the behaviour of some complex scripts. The
high-level picture is enough for users, more details follow for developers and curious readers.

The sources detect if they need to remember (cache) their previous output in order to replay
it. To do that, clients of the source must register in advance. If two clients have registered, then
the caching should be enabled. Actually that’s a bit more complicated, because of transitions.
Obviously the sources which use a transition involving some other source must register to it,
because they may eventually use it. But a jingle used in two transitions by the same switching
operator doesn’t need caching. The solution involves two kinds of registering: dynamic and static
activations. Activations are associated with a path in the graph of sources’ nesting. The dynamic
activation is a pre-registration allowing a real static activation to come later, possibly in the
middle of a time tick, from a super-path — i.e. a path of which the first one is a prefix. Two static
activations trigger caching. The other reason for enabling caching is when there is one static
activation and one dynamic activation which doesn’t come from a prefix of the static activation’s
path. It means that the dynamic activation can yield at any moment to a static activation and
that the source will be used by two sources at the same time.

1.7.2 Execution model

In your script you define a bunch of sources interacting together. The output sources hook their
output function to the root thread manager. Then the streaming starts. At every tick the root
thread calls the output hooks, and the outputs do their jobs. This task is the most important
and shouldn’t be disturbed. Thus, other tasks are done in auxiliary threads: file download, audio

1.7. CONCEPTS 23

validity checking, http polling, playlist reloading. .. No blocking or expensive call should be done
in the root thread. Remote files are completely downloaded to a local temporary file before use
by the root thread. It also means that you shouldn’t access NFS or any kind of falsely local files.

1.7.3 An abstract notion of files: requests

The request is an abstract notion of file which can be conveniently used for defining powerful
sources. A request can denote a local file, a remote file, or even a dynamically generated file. They
are resolved to a local file thanks to a set of protocols. Then, audio requests are transparently
decoded thanks to a set of audio and metadata formats.

The systematic use of requests to access files allows you to use remote URIs instead of local
paths everywhere. It is perfectly OK to create a playlist for a remote list containing remote URIs:
"?playlist("http://my/friends/playlist.pls")””.

The resolution process

The nice thing about resolution is that it is recursive and supports backtracking. An URI can be
changed into a list of new ones, which are in turn resolved. The process succeeds if some valid
local file appears at some point. If it doesn’t succeed on one branch then it goes back to another
branch. A typical complex resolution would be:

e bubble:artist = "bodom"

— ftp://no/where
* Error
— ftp://some/valid.ogg

* /tmp/success.ogg

On top of that, metadata is extracted at every step in the branch. Usually, only the final local
file yields interesting metadata (artist,album,...). But metadata can also be the nickname of the
user who requested the song, set using the annotate protocol.

At the end of the resolution process, if the request is an audio one, liquidsoap check that the
file is decodable: there should be a valid decoder for it (this isn’t based on the extension but on
the success of a format decoder), the decoder shouldn’t yield an empty stream, and opening the
decoder should be fast (less than 0.5 seconds), so that the opening of the audio file for its real
playing in the main thread doesn’t freeze it for too long.

Currently supported protocols
e SMB, FTP and HTTP using ufetch (provided by our ocaml-fetch distribution)

e HTTP, HTTPS, FTP thanks to wget

e SAY for speech synthesis (requires festival): say:I am a robot resolves to the WAV file
resulting from the synthesis.

o TIME for speech synthesis of the current time: time: It is exactly @, and you’re
still listening to Geek Radio.

e ANNOTATE for manually setting metadata, typically used in
””annotate:nick="vodka-goo",media=irc,message="special for
sam":ftp://bla/bla/bla””. The extra metadata can then be synthesized in the au-
dio stream, or merged into the standard metadata fields, or used on a rich web interface. ..

It is also possible to add a new protocol from the script, as it is done with bubble for getting
songs from a database query.

ftp://no/where
ftp://some/valid.ogg

24 CHAPTER 1. LIQUIDSOAP

Currently supported formats
e MPEG-1 Layer IT (MP2) and Layer III (MP3) through libmad and ocaml-mad ;
e Ogg Vorbis through libvorbis and ocaml-vorbis ;
o WAV.
e AAC.

1.8 Liquidsoap’s scripting language

Liquidsoap’s scripting language is a simple functional language, with labels and optional parame-
ters. It is statically typed, but infers types — you don’t have to write any types. To fit its particular
purpose, it has first-class sources and requests (see liquidsoap’s concepts) and a syntax extension
for simply specifying time intervals.

1.8.1 Constants

Constants syntax is quite common:

e integers, such as 42;

e floats, such as 3.14;

e booleans, true and false;

e strings, such as "foo” or 'bar’.

Beware: 3.0 is not an integer and 5 is not a float, the dot matters.

Strings might be surrounded by double or single quotes. In both cases, you can escape the
quote you're using: "He said: \"Hello, you\"." is valid but ’He said: "Hello, you".’ is
equivalent and nicer.

1.8.2 Expressions

You can form expressions by using:

e Constants and variable identifiers. Identifier are made of alphanumerics, underscore and dot:
[a-zA-Z0-9_\.1*

e Lists and tuples: [expr,expr,...] and (expr,expr,..)

e Sequencing: expressions may be sequenced, just juxtapose them. Usually one puts one
expression per line. Optionally, they can be separated by a semicolon. The type of a
sequence of expressions is the type of the last expression — just as a sequence evaluates to
its last expression.

e Application f(x,y) of arguments to a function. Application of labeled parameters is as
follows: f(x,foo=1,y,bar="baz"). The relative order of two parameters doesn’t matter as
long as they have different labels.

e Definitions using def-end: def source(x) = s = wrapl(x) ; wrap2(s) end or def pi =
3.14 end. The = is optional, you may prefer multi-line definitions without it. The definition
of a function with two named parameters, the second one being optional with default value
13 is as follows: def f(~foo,~bar=13) = body end.

e Shorter definitions using the equality: pi = 3.14. This is never an assignment, only a new
local definition!

1.8. LIQUIDSOAP’S SCRIPTING LANGUAGE 25

e Anonymous functions: fun (arglist) -> expr. Don’t forget to use parenthesis if you need
more than one expr: fun (x) -> f1(x) ; f2(x) will be read as (fun (x) -> f1(x)) ;
f2(x) not as fun (x) —> (f1(x) ; £2(x)).

e Code blocks: expr is a shortcut for fun () -> expr.

No assignation, only definitions. x = expr doesn’t modify x, it just defines a new x. The
expression (x = s1 ; def y = x = s2 ; (x,s3) end ; (y,x)) evaluates to ((s2,s83),s1).

Function. The return value of a function is its body where parameters have been substituted.
Accordingly, the type of the body is the return type of the function. If the body is a sequence,
the return value will thus be its last expression, and the return type its type.

return type of foo will be string.
def foo ()

a = bar()

b=1

"string"
end

Type of an application. The type of an application is the return type of function if all
mandatory arguments are applied:

def foo ()
1
end

a will be an integer
a = foo()

Otherwise, the application is ”partial”, and the expression has the type of a function.

Partial application. Application of arguments can be partial. For example if £ takes two
integer arguments, f(3) is the function waiting for the second argument. This can be useful to
instantiate once for all dummy parameters of a function:

out = output.icecast.vorbis(host="streamer",port="8080",password="sesame")
out(bitrate=112, my_radio)

Labels. Labeled and unlabeled parameters can be given at any place in an application.
The order of the arguments is up to permutation of arguments of distinct labels. For example
f(x,foo=1) is the same as f (foo=1,x), both are valid for any function f (x,~foo,...). It makes
things easier for the user, and gives its full power to the partial application.

Optional arguments. Functions can be defined with an optional value for some parameter (as
in def f(x="bla",~foo=1) = ... end), in which case it is not required to apply any argument
on the label foo. The evaluation of the function is triggered after the first application which
instantiated all mandatory parameters.

1.8.3 Types

We believe in static typing especially for a script which is intended to run during weeks: we
don’t want to notice a mistake only when the special code for your rare live events is triggered!
Moreover, we find it important to show that even for a simple script language like that, it is worth
implementing type inference. It’s not that hard, and makes life easier.

The basic types are int, float, bool, string, but also source and request. Corresponding
to pairs and lists, you get (T*T) and [T] types — all elements of a list should have the same type.
For example, [(1,"un"), (2,"deux)] has type [(int*string)].

26 CHAPTER 1. LIQUIDSOAP

A function type is noted as (arg_types) -> return_type. Labeled arguments are denoted
as ~label:T or 7label:T for optional arguments. For example the following function has type
(source,source,?jingle:string) -> source.

fun (from,to,”jingle=default) ->
add ([sequence([single(jingle), fallback([])]), fade.initial(to)])

1.8.4 Time intervals

The scripting language also has a syntax extension for simply specifying time intervals.
A date can be specified as 7w?h?m?s where 7 are integers and all components ?x are optional.
It has the following meaning:

e w stands for weekday, ranging from 0 to 7, where 1 is monday, and sunday is both 0 and 7.
e h stands for hours, ranging from 0 to 23.

e n stands for minutes, from 0 to 59.

e s stands for seconds, from 0 to 59.

It is possible to use 24 (resp. 60) as the upper bound for hours (resp. seconds or minutes) in
an interval, for example in 12h-24h.

It is possible to forget the m for minutes if hours are specified — and seconds unspecified,
obviously.

Time intervals can be either of the form DATE-DATE or simply DATE. Their meaning should be
intuitive: 10h-10h30 is valid everyday between 10:00 and 10:30; Om is valid during the first minute
of every hour.

This is typically used for specifying switch predicates:

switch([
({ 20h-22h30 }, prime_time),
({ 1w }, monday_source),
({ (6w or 7w) and Oh-12h }, week_ends_mornings),
({ true }, default_source)

D

1.8.5 Includes

You can include other files, to compose complex configurations from multiple blocks of utility or
configuration directives.

Store passwords in another configuration file, so that the main config can be safely version-controlled.
%include "passwords.liq"

Use the definitions from the other file here.

1.9 Liquidsoap settings

Liquidsoap scripts contain settings, of the form set("settings.variable.path",value), for
defining a few global variables affecting the behaviour of the application. The settings are typed,
and can be string, int, bool or string list.

You can have a list of available parameters, with their documentation, by running liquidsoap
--conf-descr. If you are interested in a particular settings section, like server-related stuff, use
liquidsoap --conf-descr-key server.

The output of these commands is a valid liquidsoap script, which you can edit to set the values
that you want, and load it (implicitly or not) before you other scripts.

1.10. COOKBOOK 27

1.10 Cookbook

The recipes show how to build a source with a particular feature. You can try short snippets by
wrapping the code in an out(..) operator and passing it directly to liquidsoap:

lliquidsoap -v ’out(recipe)’

For longer recipes, you might want to create a short script:

#!/usr/bin/liquidsoap -v

set("log.file.path","/tmp/<script>.log")
set("log.stdout",true)

recipe = # <fill this>
out (recipe)

See the quickstart guide for more information on how to run Liquidsoap, on what is this
out(..) operator, etc.

1.10.1 Files

A source which infinitely repeats the same URI:

single("/my/default.ogg")

A source which plays a playlist of requests — a playlist is a file with an URI per line.

Shuffle, play every URI, start over.

playlist("/my/playlist.txt")

Do not randomize

playlist(mode="normal", "/my/pl.m3u")

The playlist can come from any URI, can be reloaded every 10 minutes.
playlist(reload=600,"http://my/playlist.txt")

When building your stream, you’ll need to make it unfallible. Usually, you achieve that using
a fallback switch (see below) with a branch made of a safe single or playlist.safe. Roughly, a
single is safe when it is given a valid local audio file. A playlist.safe behaves just like a playlist
but will check that all files in the playlist are valid local audio files. This is quite an heavy check,
you don’t want to have large safe playlists.

1.10.2 Transcoding

Liquidsoap can achieve basic streaming tasks like transcoding with ease. You input any number of
”source” streams using input.http, and then transcode them to any number of formats / bitrates
/ etc. The only limitation is your hardware : encoding and decoding are both heavy on CPU.
Also keep in mind a limitation inherent to OCaml: one Liquidsoap instance can only use a single
processor or core. You can easily work around this limitation by launching multiple Liquidsoap
instances, and thus take advantage of that 8-core Xeon server laying around in the dust in your
garage.

Input the stream for an Icecast server (or any other source)
input = mksafe(input.http("http://streaming.example.com:8000/your-stream.ogg"))

First transcoder: MP3 32 kbps

28 CHAPTER 1. LIQUIDSOAP

output.icecast.mp3(mount="/your-stream-32.mp3", bitrate = 32,
samplerate = 22050, stereo = false, host="streaming.example.com",
port=8000, password="hackme", input)

Second transcoder : MP3 128 kbps

output.icecast.mp3(mount="/your-stream-128.mp3", bitrate = 128,
host="streaming.example.com", port=8000, password="hackme",

input)

1.10.3 Scheduling

A fallback switch

fallback([playlist("http://my/playlist"), single("/my/jingle.ogg")])
A scheduler, assuming you have defined the night and day sources
switch([({Oh-7h}, night), ({7h-24h}, day) 1)

1.10.4 Force a file/playlist to be played at least every XX minutes

It can be useful to have a special playlist that is played at least every 20 minutes for instance (3
times per hour).

You may think of a promotional playlist for instance.

Here is the recipe:

timed_promotions = delay(1200.,promotions) # 1200 sec = 20 min
main_source = fallback([timed_promotions,other_source])

Where promotions is a source selecting the file to be promoted.

1.10.5 Handle special events: mix or switch

Add a jingle to your normal source at the beginning of every hour:
add([normal,switch([({OmOs}, jingle)])])

Switch to a live show as soon as one is available. Make the show unavailable when it is silent,
and skip tracks from the normal source if they contain too much silence.

fallback(track_sensitive=false,
[strip_blank(input.http("http://myicecast:8080/1live.ogg")),
skip_blank(normal)])

Without the track_sensitive=false the fallback would wait the end of a track to switch to
the live. When using the blank detection operators, make sure to fine-tune their threshold and
length (float) parameters.

1.10.6 Unix interface, dynamic requests

request.dynamic is a source which takes a custom function for creating its new requests. This
function can be used to call an external program. The source expects a ()->request func-
tion. To create the request, the function will have to use the request function which has type
(string,?indicators: [string]). The first string is the initial URI of the request, which is
resolved to get an audio file. The second argument can be used to directly specify the first row
of URIs (see the concepts page), in which case the initial URI is just here for naming, and the
resolving process will try your list of indicators one by one until a valid audio file is obtained.
The simplest example takes the output of an external script as an URI to create a new request:

1.10. COOKBOOK 29

request.dynamic({ request(get_process_output("my_script my_params")) })

More complex, the following snippet defines a source which repeatedly plays the first valid URI
in the playlist:

request.dynamic({ request("bar:foo",
indicators=get_process_lines("cat "“quote("playlist.pls"™))) })

Of course a more interesting behaviour is obtained with a more interesting program than ”cat”.

Another way of using an external program is to define a new protocol which uses it to resolve
URIs. add_protocol takes a protocol name, a function to be used for resolving URIs using that
protocol. The function will be given the URI parameter part and the time left for resolving —
though nothing really bad happens if you don’t respect it. It usually passes the parameter to an
external program, that’s how we use bubble for example:

add_protocol("bubble",
fun (arg,delay) -> get_process_lines("/usr/bin/bubble-query "“quote(arg)))

When resolving the URI bubble:artist="seed", liquidsoap will call the function, which will
call bubble-query ’artist="seed"’ which will output 10 lines, one URI per line.

1.10.7 Dynamic input with harbor

The operator input.harbor allows you to receive a source stream directly inside a running lig-
uidsoap.

It starts a listening server on where any Icecast2-compatible source client can connect. When
a source is connected, its input if fed to the corresponding source in the script, which becomes
available.

This can be very useful to relay a live stream without polling the Icecast server for it.

An example can be:

Serveur settings

set ("harbor.bind_addr","0.0.0.0")
set ("harbor.port",8080)

set ("harbor.password", "hackme")

An emergency file
emergency = single("/path/to/emergency/single.ogg")

A playlist
playlist = playlist("/path/to/playlist")

A live source
live = input.harbor("live")

fallback
radio = fallback(track_sensitive=false, [live,playlist,emergency])

output it
output.icecast.vorbis(radio,mount="test" ,host="host")

This script, when launched, will start a local server, here bound to ”70.0.0.0”. This means that
it will listen on any IP address available on the machine for a connection coming from any IP
address. The server will wait for any source stream on mount point ”/live” to login.

Then if you start a source client and tell it to stream to your server, on port 8080, with password
”hackme”, the live source will become available and the radio will stream it immediately.

30 CHAPTER 1. LIQUIDSOAP

1.10.8 Lastfm input

You can listen to lastfm (http://www.last.fm/) radios using Liquidsoap. The corresponding
operator is input.lastfm and is used that way:

lastfm_stream = input.lastfm("lastfm://artist/Wackies")

Lastfm’s URIs start with lastfm::

e lastfm://user/tootsb446/paylist: a user’s playlist

e lastfm://globaltags/creative commons: songs tagged with ”creative commons”

e lastfm://user/tootsb446/tags/rocksteady: songs tagged “rocksteady” by the user.

You can find more of them on the website, last.fm (http://www.last.fm/)
Another operator allows to generate lastfm: URIs, lastfm.uri. Its parameters are:

e user Lastfm user

e password Lastfm password

e discovery Allow lastfm suggestions

e radio URI, e.g. user/toots5446/playlist, globaltags/rocksteady

Example:

uri = lastfm.uri(user="tootsb5446", password="hackme", discovery=false, "user/toots4556/pl%ylist")

1.10.9 Transitions

There are two kinds of transitions. Transitions between two different children of a switch are not
problematic. Transitions between different tracks of the same source are more tricky, since they
involve a fast forward computation of the end of a track before feeding it to the transition function:
such a thing is only possible when only one operator is using the source, otherwise it’ll get out of
sync.

Switch-based transitions

The switch-based operators (switch, fallback and random) support transitions. For every child,
you can specify a transition function computing the output stream when moving from one child
to another. This function is given two source parameters: the child which is about to be left,
and the new selected child. The default transition is fun (a,b) -> b, it simply relays the new
selected child source. Other possible transition functions:

A simple (long) cross-fade
def crossfade(a,b)
add(normalize=false,
[sequence([blank(duration=5.),
fade.initial (duration=10.,b) 1),
fade.final(duration=10.,a) 1)
end

Partially apply next to give it a jingle source.

It will fade out the old source, then play the jingle.
At the same time it fades in the new source.

def next(j,a,b)

http://www.last.fm/
http://www.last.fm/

1.10. COOKBOOK 31

add(normalize=false,
[sequence(merge=true,
[blank(duration=3.),
fade.initial(duration=6.,b) 1),
sequence([fade.final (duration=9.,a),
j,fallback([1D1) 1)
end

A similar transition, which does a cross-fading from A to B
and adds a jingle
def transition(j,a,b)
add(normalize=false,
[fade.initial(b),
sequence (merge=true,
[blank(duration=1.),j,fallback([]1)]),
fade.final(a) 1)
end

Finally, we build a source which plays a playlist, and switches to the live show as soon as it
starts, using the transition function as a transition. At the end of the live, the playlist comes
back with a cross-fading.

fallback(track_sensitive=false,
transitions=[crossfade, transition(jingle) 1],
[input.http("http://localhost:8000/1live.ogg"),
playlist("playlist.pls") 1)

Cross-based transitions

The cross() operator allows arbitrary transitions between tracks of a same source. Here is how
to use it in order to get a cross-fade:

def crossfade(“start_next, fade_in, fade_out,s)

s = fade.in(duration=fade_in,s)

s = fade.out(duration=fade_out,s)

fader = fun (a,b) -> add(normalize=false, [b,a])

cross(fader,s)
end
my_source=crossfade(start_next=1.,fade_out=1.,fade_in=1.,my_source)

The fade-in and fade-out parameters indicate the duraction of the fading effects. The start-
next parameters tells how much overlap there will be between the two tracks. If you want a long
cross-fading with a smaller overlap, you should use a sequence to stick some blank section before
the beginning of b in fader.

The three parameters given here are only default values, and will be overriden by values coming
from the metadata tags 1iq_fade_in, 1iq_fade_out and liq_start_next.

How to get transitions on a mix?

If you add() a special source on top of your normal stream, you might notice that the re-
normalization is not smooth at all: if the special source suddenly becomes available, the normal
one will be re-normalized immediately, which is not very nice to hear, especially if the special
source starts with a low noise level. The add() operator does not support transitions but there
is a solution for this kind of situation. Use a fallback() in order to get transitions, and simply
keep playing the normal source in the transition. Here is the code.

32 CHAPTER 1. LIQUIDSOAP

def smooth_add(“normal, “special)
d = 1. # delay before mixing after beginning of mix
p = 0.2 # portion of normal when mixed
fade.final = fade.final (duration=d*.2.)
fade.initial = fade.initial(duration=d*.2.)
q=1. -. p
c = change_volume
fallback(track_sensitive=false,
[special,normal],
transitions=[
fun(normal,special)->
add (normalize=false, [c(p,normal),
c(q,fade.final(normal)),
sequence ([blank(duration=d),c(q,special)])]),
fun(special,normal)->
add(normalize=false, [c(p,normal),c(q,fade.initial(normal))])

D

end

The first transition is used when the special source becomes available. It sums the special
source (after a delay d) together with a reduced version of normal (c(p,normal)) and its faded-
out complement (c(q,normal)). As a result the amplitude of normal will smoothly move from
1=p q down to p.

The second transition is called when special becomes unavailable. This time, the reduced
version of normal is mixed with its faded-in complement.

1.10.10 Alsa unbuffered output

You can use Liquidsoap to capture and play through alsa with a minimal delay. This particulary
useful when you want to run a live show from your computer. You can then directly capture and
play audio through external speakers without delay for the DJ !

This configuration is not trivial since it relies on your hardware. Some hardware will allow
both recording and playing at the same time, some only one at once, and some none at all.. Those
note to configure are what works for us, we don’t know if they’ll fit all hardware.

First launch liquidsoap as a one line program

liquidsoap -v --debug ’input.alsa(bufferize=false)’

Unless you’re lucky, the logs are full of lines like the following:

’Partial read (940 instead of 1024)! Selecting another buffer size or device can help. ‘

The solution is then to fix the captured frame size to this value, which seems specific to your
hardware. Let’s try this script:

Set correct frame size:
set ("frame.size",940)

input = input.alsa(bufferize=false)
output.alsa(bufferize=false, input)

If everything goes right, you may hear on your output the captured sound without any delay
! If you want to test the difference, just run the same script with bufferize=true (or without this
parameter since it is the default).

If you experience problems it might be a good idea to double the value of the frame size. This
increases stability, but also latency.

1.11. FREQUENTLY ASKED QUESTIONS 33

1.11 Frequently Asked Questions

1.11.1 I started receiving this log on my streams: We must catchup 0.44
seconds (we’ve been late for 100 rounds)! What does it mean?

Liquidsoap is a (sloppy) real-time application. I won’t detail what the sloppiness is about, it really
doesn’t matter in most usages anyway. It obviously has to care about time, since it is streaming
(audio) data which has an intended rate. The streaming process (read more about liquidsoap’s
concepts) is split in rounds: in every round a tiny bit of data is computed and sent. A round
has an intended duration. If the computation takes too long, that duration may be exceeded. In
that case, liquidsoap will try to make the next rounds smaller to ”catchup” on the latency. If the
latency gets really high, liquidsoap reports it. It also reports if a little latency persists for more
that 100 rounds, which is the case in that message.

That’s it for the stupid description. Now, when should one care about these warnings, and how
to fix them ? In net radio usages, tiny delays don’t matter and are not reported: there are severals
buffers which hide the latency. (It matters more with low latency usages, typically hardware 1/0.)
If the latency gets really high, the users might get underruns, and you might experience discon-
nections. In that case it means that you liquidsoap setup is really too computation-expensive for
your machine: consider downgrading quality, distributing encoding, removing audio processings,
etc.

There are two main process where you can suffer a bottleneck:

1) Encoding on the fly

2) Keepalive liquidsoap

The first is normally high, specially if you use a single audio file and deliver it over too many
different bitrates. I have noticed that over 40 reencodings on a pentium D liquidsoap starts
complaining, if the recoding use high bitrates, it gets worse, for example you should expect more
computation-expensive reencoding at 96kb than at 32kb. There is a simple and elegant solution,
reencode by hand your audio files, and create parallel folders, normally space on disk is cheaper
than processor speed and easier to increment.

The second is the normal processor and RAM resources needed by a liquidsoap script to stay
alive and keep communicated with your output, liquidsoap does not consume to much RAM,
although situations may vary I have never seen a liquidsoap script using more than 3 Mbytes of
RAM, the CPU usage is low if you do not reencode on the fly, and IS CONSTANT. to calculate
how many liquidsoap scripts you can keep at the same time, just stop any other services, start a
liquidsoap script and check how much processor uses.

34

CHAPTER 1.

LIQUIDSOAP

Chapter 2

Advanced topics

2.1 Blank detection

Liquidsoap has three operators for dealing with blanks.

On GeekRadio, we play many files, some of which include bonus tracks, which means that they
end with a very long blank and then a little extra music. It’s annoying to get that broadcasted.
The skip_blank operator skips the current track when a too long blank is detected, which avoids
that. The typical usage is simple:

Wrap it with a blank skipper
source = skip_blank(source)

At RadioPi they have another problem: sometimes they have technical problems, and while
they think they are doing a live show, they’re making noise only in the studio, while only blank
is broadcasted; sometimes, the staff has so much fun (or is it something else ?7) doing live shows
that they live at the end of the show without thinking to turn off the live, and the listeners get
some silence again. To avoid that problem we made the strip_blank operators which hides the
stream when it’s too blank (i.e. declare it as unavailable), which perfectly suits the typical setup
used for live shows:

interlude = single("/path/to/sorryfortheblank.ogg")
After 5 sec of blank the microphone stream is ignored,
which causes the stream to fallback to interlude.
As soon as noise comes back to the microphone the stream comes
back to the live -- thanks to track_sensitive=false.
stream = fallback(track_sensitive=false,
[strip_blank(length=5.,1ive) , interlude])

Put that stream to a local file
output.file.ogg("/tmp/hop.ogg",stream)

If you don’t get the difference between these two operators, maybe you need to learn more
about the basic concepts of Liquidsoap, especially the notion of source.
Finally, if you need to do some custom action when there’s too much blank, we have on_blank:

def handler()

system("/path/to/your/script to do whathever you want")
end
source = on_blank(handler,source)

35

36 CHAPTER 2. ADVANCED TOPICS

2.2 Distributed encoding

Using RTP, liquidsoap can directly output the raw stream with metadata. Then you can set up
another liquidsoap instance on an other machine of your network which just inputs this RTP
stream and encodes it, for example for sending to Icecast. It allows you to share the load on many
machines, and also make the main liquidsoap process more independant of the Icecast servers.
These can now crash or be restarted, you’ll just have to restart the RTP encoders.

These operators are known to be quite buggy but may work depending on your needs.

Here is how to setup a RTP server:

set("log.file.path","/tmp/<script>.log"
set("log.stdout",true)

output.rtp(single("/usr/share/mrpingouin/mp3bis/bodom/TheNail.ogg"))

And here is the client, takes the RTP stream and plays it on your speakers:

set("log.file.path","/tmp/<script>.log"
set("log.stdout",true)

output.ao(input.rtp())

The server port has been specified on the server to be different from the default 1234 used on the
client, so that thet don’t conflict if ran on the same host. If you want to run the client on another
host, specify a sufficient TTL for the RTP output, default being 0: output.rtp(ttl=1,...).

Chapter 3

Other tools

3.1 Bubble

Bubble is a simple program which scans your audio files and stores their metadata in a SQLite
database. It can rewrite paths into URI so that you can index remote files mounted locally and
rewrite the local path into the general URI before storing it in the database. For example if you
mount your samba workground in /mnt/samba/workgroup using fusesmb, you’ll ask bubble to
rewrite ” /mnt/samba/workgroup” into ”smb://”.

Bubble has been designed to be interfaced with liquidsoap to provide a protocol for selecting
files by queries on metadata. URI rewriting makes it possible to query from another machine than
the one where the indexer runs, and also makes sure that the file will appear as a remote one to
liquidsoap, so that it will be fully downloaded it before being played.

To add the bubble protocol to liquidsoap, we use the following code:

bubble = "/home/dbaelde/savonet/bubble/src/bubble-query " ~
"-d /var/local/cache/bubble/bubble.sql "
add_protocol("bubble",
fun (arg,delay) -> get_process_lines(bubble quote(arg)))

It allows us to have an IRC bot which accepts queries like play "Alabama song" and trans-
forms it into the URI bubble:title="Alabama song" before queueing it in a liquidsoap instance.
The bubble protocol in liquidsoap will call the bubble-query script which will transform the
query into a SQLite query and return a list of ten random matches, which liquidsoap will try.

Although it has been used for months as distributed on the SVN, bubble is also a proof-of-
concept tool. It is very concise and can be tailored to custom needs.

3.2 Bottle

Bottle is a prototype IRC bot written in OCaml. It uses a modular plugin system and is in
particular able to communicate with liquidsoap. Currently, it is able to:

e show information about the song currently playing,
e listen to users’ song requests,
e skip songs.

It is an example of how to write software which interacts with liquidsoap. You can get its
source code via SVN: http://svn.sourceforge.net/savonet/trunk/bottle/.

This kind of tools doesn’t need to be done in OCaml. It is quite easy to write an interface
module for liquidsoap in perl, python or ruby too. We have a perl module in an unpublished bot
— available on request. A python module is available in liguidsoap.

37

http://svn.sourceforge.net/savonet/trunk/bottle/

38

CHAPTER 3.

OTHER TOOLS

Chapter 4

Reference

4.1 Source / Input

4.1.1 blank

(?7id:string, 7duration:float)->source
Produce silence.

e id (string — defaults to ""): Force the value of the source ID.

e duration (float — defaults to 0.): Duration of blank tracks in seconds, default means
forever.

4.1.2 input.alsa

(?7id:string, Tbufferize:bool, 7device:string)->source
Stream from an ALSA input device.

e id (string — defaults to ""): Force the value of the source ID.
e bufferize (bool — defaults to true): Bufferize input.

e device (string — defaults to "default"): Alsa device to use.

4.1.3 input.harbor

(?7id:string, 7buffer:float, ?max:float, 7on_connect:(()->unit),
7on_disconnect: (()->unit), string)->source
Retrieves the given http stream from the harbor.

e id (string — defaults to ""): Force the value of the source ID.

e buffer (float — defaults to 2.): Duration of the pre-buffered data.

e max (float — defaults to 10.): Maximum duration of the buffered data.

e on connect (()->unit — defaults to ()): Functions to excecute when a source is connected

e on_disconnect (()->unit — defaults to ()): Functions to excecute when a source is dis-
connected

e (unlabeled) (string): Mountpoint to look for.

39

40 CHAPTER 4. REFERENCE

4.1.4 input.http

(?7id:string, 7autostart:bool, 7buffer:float, 7timeout:float,
?playlist._mode:string, ?max:float, string)->source

Forwards the given http stream. The relay can be paused/resumed using the start/stop telnet
commands.

e id (string — defaults to ""): Force the value of the source ID.

e autostart (bool — defaults to true): Initially start relaying or not.

e buffer (float — defaults to 2.): Duration of the pre-buffered data.

e timeout (float — defaults to 2.): Timeout for http connection.

e playlist mode (string — defaults to "normal"): normal—random—randomize—first
e max (float — defaults to 10.): Maximum duration of the buffered data.

e (unlabeled) (string): URL of an http stream (default port is 80).

4.1.5 input.lastfm

(7id:string, 7autostart:bool, 7buffer:float, 7max:float, string)->source
Forwards the given lastfm stream. The relay can be paused/resumed using the start/stop
telnet commands.

e id (string — defaults to ""): Force the value of the source ID.
e autostart (bool — defaults to true): Initially start relaying or not.
e buffer (float — defaults to 2.): Duration of the pre-buffered data.

e max (float — defaults to 10.): Maximum duration of the buffered data.

(unlabeled) (string): URI of a lastfm stream (e.g. lastfm://user/toots5446 /playlist).

4.1.6 input.oss

(7id:string, 7device:string)->source
Stream from an OSS input device.

e id (string — defaults to ""): Force the value of the source ID.

e device (string — defaults to "/dev/dsp"): OSS device to use.

4.1.7 input.portaudio

(?7id:string, 7buflen:int)->source
Stream from a portaudio input device.

e id (string — defaults to ""): Force the value of the source ID.

e buflen (int — defaults to 256): Length of a buffer in samples.

4.1.8 noise

(?id:string, 7duration:float)->source
Generate white noise.

e id (string — defaults to ""): Force the value of the source ID.

e duration (float — defaults to 0.)

4.1. SOURCE / INPUT 41

4.1.9 playlist

(?7id:string, 7length:float, ?default_duration:float, 7timeout:float,
?mode:string, 7reload:int, 7reload mode:string, 7timeout:float, string)->source
Loop on a playlist of URIs.

e id (string — defaults to ""): Force the value of the source ID.

e length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

e default_duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

e timeout (float — defaults to 20.): Timeout (in sec.) for a single download.
e mode (string — defaults to "randomize"): normal—random—randomize

e reload (int — defaults to 0): Amount of time (in seconds or rounds) before which the
playlist is reloaded; 0 means never.

e reload mode (string — defaults to "seconds"): rounds—seconds: unit of the ’reload’
parameter.

e timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

e (unlabeled) (string): URI where to find the playlist.

4.1.10 playlist.safe

(7id:string, ?mode:string, ?reload:int, 7reload mode:string, 7timeout:float,
string)->source

Loop on a playlist of local files, and never fail. In order to do so, it has to check every file
at the loading, so the streamer startup may take a few seconds. To avoid this, use a standard
playlist, and put only a few local files in a default safe_playlist in order to ensure the liveness of
the streamer.

e id (string — defaults to ""): Force the value of the source ID.
e mode (string — defaults to "randomize"): normal—random—randomize

e reload (int — defaults to 0): Amount of time (in seconds or rounds) before which the
playlist is reloaded; 0 means never.

e reload mode (string — defaults to "seconds"): rounds—seconds: unit of the ’reload’
parameter.

e timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

e (unlabeled) (string): URI where to find the playlist.

4.1.11 request.dynamic

(7id:string, (()->request), ?length:float, 7default_duration:float,
?timeout:float)->source
Play request dynamically created by a given function.

e id (string — defaults to ""): Force the value of the source ID.

42

CHAPTER 4. REFERENCE

(unlabeled) (()->request): A function generating requests: an initial URI (possibly fake)
together with an initial list of alternative indicators.

length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

default_duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.1.12 request.equeue

(7id:string, 7length:float, 7default_duration:float, 7timeout:float)->source
Receive URIs from users, and play them. Insertion and deletion possible at any position.

id (string — defaults to ""): Force the value of the source ID.

length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

default_duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.1.13 request.queue

(7id:string, 7queue: [request], 7interactive:bool, ?length:float,
?default_duration:float, ?timeout:float)->source
Receive URIs from users, and play them.

id (string — defaults to ""): Force the value of the source ID.
queue ([request] — defaults to [1): Initial queue of requests.
interactive (bool — defaults to true): Should the queue be controllable via telnet?

length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

default_duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.1.14 saw

(?7id:string, 7duration:float, 7float)->source
Generate a saw wave.

id (string — defaults to ""): Force the value of the source ID.
duration (float — defaults to 0.)

(unlabeled) (float — defaults to 440.): Frequency of the saw.

4.2. SOURCE / OUTPUT 43

4.1.15 sine

(?id:string, 7duration:float, 7float)->source
Generate a sine wave.

e id (string — defaults to ""): Force the value of the source ID.
e duration (float — defaults to 0.)

e (unlabeled) (float — defaults to 440.): Frequency of the sine.

4.1.16 single

(7id:string, string, 7length:float, 7default_duration:float,
7timeout:float)->source

Loop on a request. It never fails if the request is static, meaning that it can be fetched once.
Typically, http, ftp, say requests are static, and time is not.

e id (string — defaults to ""): Force the value of the source ID.
e (unlabeled) (string): URI where to find the file

e length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

e default duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

e timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.1.17 square

(7id:string, ?duration:float, 7float)->source
Generate a square wave.

e id (string — defaults to ""): Force the value of the source ID.
e duration (float — defaults to 0.)

e (unlabeled) (float — defaults to 440.): Frequency of the square.

4.2 Source / Output

4.2.1 output.alsa

(7id:string, 7bufferize:bool, 7device:string, source)->source
Output the source’s stream to an ALSA output device.

e id (string — defaults to ""): Force the value of the source ID.

bufferize (bool — defaults to true): Bufferize output

e device (string — defaults to "default"): Alsa device to use

(unlabeled) (source)

44 CHAPTER 4. REFERENCE

4.2.2 output.ao

(?7id:string, ?start:bool, ?7driver:string, 7options:[(string*string)],
source)->source
Output stream to local sound card using libao.

e id (string — defaults to ""): Force the value of the source ID.

e start (bool — defaults to true): Start output on operator initialization.

e driver (string — defaults to ""): libao driver to use.

e options ([(string*string)] — defaults to []): List of parameters, depends on driver.

e (unlabeled) (source)

4.2.3 output.dummy

(7id:string, source)->source
Dummy output for debugging purposes.

e id (string — defaults to ""): Force the value of the source ID.

e (unlabeled) (source)

4.2.4 output.file.vorbis

(?id:string, ?samplerate:int, 7stereo:bool, 7append:bool, ?perm:int,

?dir_perm:int, 7reopen_delay:float, 7reopen_on_metadata:bool,

?reopen_when: (()->bool), string, ?start:bool, ?quality:float, source)->source
Output the source stream as an Ogg Vorbis file in Variable BitRate mode.

e id (string — defaults to ""): Force the value of the source ID.

e samplerate (int — defaults to 44100)

e stereo (bool — defaults to true)

e append (bool — defaults to false): Do not truncate but append in the file if it exists.

e perm (int — defaults to 438): Permission of the file if it has to be created, up to umask.

e dir perm (int — defaults to 511): Permission of the directories if some have to be created,
up to umask.

e reopen_delay (float — defaults to 120.): Prevent re-opening of the file within that delay,
in seconds.

e reopen_on metadata (bool — defaults to false): Re-open on every new metadata infor-
mation.

e reopen_when (()->bool — defaults to false): When should the output file be re-opened.

e (unlabeled) (string): Filename where to output the stream. Some strftime conversion
specifiers are available: %SMHdmY. You can also use $(..) interpolation notation for meta-
data.

e start (bool — defaults to true): Start output on operator initialization.

e quality (float — defaults to 2.): Desired quality level, currently from -1. to 10. (low to
high).

e (unlabeled) (source)

4.2. SOURCE / OUTPUT 45

4.2.5 output.file.vorbis.abr

(?id:string, 7samplerate:int, 7stereo:bool, 7append:bool, 7perm:int,
?dir_perm:int, 7reopen_delay:float, 7reopen_on metadata:bool,
?reopen_when: (()->bool), string, 7start:bool, 7bitrate:int, ?min_bitrate:int,
?max_bitrate:int, source)->source

Output the source stream as an Ogg Vorbis file in Average BitRate mode.

e id (string — defaults to ""): Force the value of the source ID.

e samplerate (int — defaults to 44100)

e stereo (bool — defaults to true)

e append (bool — defaults to false): Do not truncate but append in the file if it exists.

e pern (int — defaults to 438): Permission of the file if it has to be created, up to umask.

e dir_perm (int — defaults to 511): Permission of the directories if some have to be created,
up to umask.

e reopen_delay (float — defaults to 120.): Prevent re-opening of the file within that delay,
in seconds.

e reopen_on metadata (bool — defaults to false): Re-open on every new metadata infor-
mation.

e reopen_when (()->bool — defaults to false): When should the output file be re-opened.

e (unlabeled) (string): Filename where to output the stream. Some strftime conversion
specifiers are available: %SMHdmY. You can also use $(..) interpolation notation for meta-
data.

e start (bool — defaults to true): Start output on operator initialization.
e bitrate (int — defaults to 128): Target bitrate (in kbps).

e min bitrate (int — defaults to 118): Minimum bitrate (in kbps).

e max bitrate (int — defaults to 138): Maximum bitrate (in kbps).

e (unlabeled) (source)

4.2.6 output.file.vorbis.cbr

(7id:string, 7samplerate:int, ?stereo:bool, 7append:bool, 7perm:int,

?dir_perm:int, 7reopen_delay:float, 7reopen_on metadata:bool,

?reopen_when: (()->bool), string, 7start:bool, Tbitrate:int, source)->source
Output the source stream as an Ogg Vorbis file in Constant BitRate mode.

e id (string — defaults to ""): Force the value of the source ID.

e samplerate (int — defaults to 44100)

e stereo (bool — defaults to true)

e append (bool — defaults to false): Do not truncate but append in the file if it exists.

e perm (int — defaults to 438): Permission of the file if it has to be created, up to umask.

e dir_perm (int — defaults to 511): Permission of the directories if some have to be created,
up to umask.

46

CHAPTER 4. REFERENCE

e reopen_delay (float — defaults to 120.): Prevent re-opening of the file within that delay,

in seconds.

e reopen_on metadata (bool — defaults to false): Re-open on every new metadata infor-

mation.

e reopen_when (()->bool — defaults to false): When should the output file be re-opened.

e (unlabeled) (string): Filename where to output the stream. Some strftime conversion

specifiers are available: %SMHdmY. You can also use $(..) interpolation notation for meta-
data.

e start (bool — defaults to true): Start output on operator initialization.
e bitrate (int — defaults to 128): Bitrate (in kbps).

e (unlabeled) (source)

4.2.7 output.file.wav

(7id:string, 7start:bool, string, source)->source

Output the source’s stream to a WAV file.

e id (string — defaults to ""): Force the value of the source ID.

e start (bool — defaults to true)

(unlabeled) (string)

(unlabeled) (source)

4.2.8 output.icecast.vorbis

(?id:string, ?samplerate:int, 7stereo:bool, ?start:bool, ?Prestart:bool,
?restart_delay:int, 7host:string, 7port:int, 7user:string, 7password:string,
?genre:string, 7url:string, 7description:string, ?public:bool,
?multicast_ip:string, 7sync:bool, 7mount:string, 7name:string, source,
7quality:float)->source

Output the source stream as an Ogg Vorbis stream to an Icecast-compatible server in Variable

BitRate mode.

e id (string — defaults to ""): Force the value of the source ID.

e samplerate (int — defaults to 44100)

e stereo (bool — defaults to true)

e start (bool — defaults to true): Start output threads on operator initialization.

e restart (bool — defaults to false): Restart output after a failure. By default, liquidsoap
will stop if the output failed.

e restart_delay (int — defaults to 3): Delay, in seconds, before attempting new connection,
if restart is enabled.

e host (string — defaults to "localhost")
e port (int — defaults to 8000)

e user (string — defaults to "source")

4.2. SOURCE / OUTPUT 47

e password (string — defaults to "hackme")

e genre (string — defaults to "Misc")

e url (string — defaults to "http://savonet.sf.net")

e description (string — defaults to "0Caml Radio!")

e public (bool — defaults to true)

e multicast_ip (string — defaults to "no_multicast")

e sync (bool — defaults to false): let shout do the synchronization
e mount (string — defaults to "Use [name] .ogg")

e name (string — defaults to "Use [mount]")

e (unlabeled) (source)

e quality (float — defaults to 2.): Desired quality level, currently from -1. to 10. (low to

high).

4.2.9 output.icecast.vorbis.abr

(?id:string, 7samplerate:int, 7stereo:bool, ?start:bool, 7restart:bool,
?restart_delay:int, 7host:string, 7port:int, 7user:string, 7password:string,
?genre:string, 7url:string, 7description:string, 7public:bool,
?multicast_ip:string, ?sync:bool, ?mount:string, 7name:string, source,
?bitrate:int, ?min_bitrate:int, 7max_bitrate:int)->source

Output the source stream as an Ogg Vorbis stream to an Icecast-compatible server in Average
BitRate mode.

e id (string — defaults to ""): Force the value of the source ID.

e samplerate (int — defaults to 44100)

e stereo (bool — defaults to true)

e start (bool — defaults to true): Start output threads on operator initialization.

e restart (bool — defaults to false): Restart output after a failure. By default, liquidsoap
will stop if the output failed.

e restart_delay (int — defaults to 3): Delay, in seconds, before attempting new connection,
if restart is enabled.

e host (string — defaults to "localhost")

e port (int — defaults to 8000)

e user (string — defaults to "source")

e password (string — defaults to "hackme")

e genre (string — defaults to "Misc")

e url (string — defaults to "http://savonet.sf.net")
e description (string — defaults to "0Caml Radio!")

e public (bool — defaults to true)

http://savonet.sf.net
http://savonet.sf.net

48 CHAPTER 4. REFERENCE

e multicast_ip (string — defaults to "no_multicast")

e sync (bool — defaults to false): let shout do the synchronization
e mount (string — defaults to "Use [name] .ogg")

e name (string — defaults to "Use [mount]")

e (unlabeled) (source)

e bitrate (int — defaults to 128): Target bitrate (in kbps).

e min bitrate (int — defaults to 118): Minimum bitrate (in kbps).

e max bitrate (int — defaults to 138): Maximum bitrate (in kbps).

4.2.10 output.icecast.vorbis.cbr

(7id:string, 7samplerate:int, 7stereo:bool, 7start:bool, ?Prestart:bool,
?restart_delay:int, 7host:string, 7port:int, 7user:string, 7password:string,
?genre:string, 7url:string, 7description:string, 7public:bool,
?multicast_ip:string, 7sync:bool, 7mount:string, 7“name:string, source,
?bitrate:int)->source

Output the source stream as an Ogg Vorbis stream to an Icecast-compatible server in Constant
BitRate mode.

e id (string — defaults to ""): Force the value of the source ID.

e samplerate (int — defaults to 44100)

e stereo (bool — defaults to true)

e start (bool — defaults to true): Start output threads on operator initialization.

e restart (bool — defaults to false): Restart output after a failure. By default, liquidsoap
will stop if the output failed.

e restart_delay (int — defaults to 3): Delay, in seconds, before attempting new connection,
if restart is enabled.

e host (string — defaults to "localhost")

e port (int — defaults to 8000)

e user (string — defaults to "source")

e password (string — defaults to "hackme")

e genre (string — defaults to "Misc")

e url (string — defaults to "http://savonet.sf.net")
e description (string — defaults to "0Caml Radio!")
e public (bool — defaults to true)

e multicast_ip (string — defaults to "no_multicast")
e sync (bool — defaults to false): let shout do the synchronization
e mount (string — defaults to "Use [name] .ogg")

e name (string — defaults to "Use [mount]")

e (unlabeled) (source)

e bitrate (int — defaults to 128): Bitrate (in kbps).

http://savonet.sf.net

4.3. SOURCE / SOUND PROCESSING 49

4.2.11 output.oss

(7id:string, 7device:string, source)->source
Output the source’s stream to an OSS output device.

e id (string — defaults to ""): Force the value of the source ID.
e device (string — defaults to "/dev/dsp"): OSS device to use.

e (unlabeled) (source)

4.2.12 output.portaudio

(?id:string, ?buflen:int, source)->source
Output the source’s stream to a portaudio output device.

e id (string — defaults to ""): Force the value of the source ID.
e buflen (int — defaults to 256): Length of a buffer in samples.

e (unlabeled) (source)

4.3 Source / Sound Processing

4.3.1 accelerate

(7id:string, float, ?before:float, 7after:float, source)->source
Accelerates a stream, possibly only the middle of the tracks. Useful for testing transitions.

e id (string — defaults to ""): Force the value of the source ID.

(unlabeled) (float)

before (float — defaults to 10.): Do not accelerate during the first jbefore; seconds.

e after (float — defaults to 10.): Do not accelerate during the last jafter; seconds.

(unlabeled) (source)

4.3.2 add

(?id:string, ?7normalize:bool, 7weights:[int], [source])->source
Mix sources, with optional normalization. Only relay metadata from the first source that is
effectively summed.

e id (string — defaults to ""): Force the value of the source ID.
e normalize (bool — defaults to true)

e weights ([int] — defaults to [1): Relative weight of the sources in the sum. The empty
list stands for the homogeneous distribution.

e (unlabeled) ([source])

o0 CHAPTER 4. REFERENCE

4.3.3 amplify

(?7id:string, ’a, source)->source where ’a is either float or ()->float
Multiply the amplitude of the signal.

e id (string — defaults to ""): Force the value of the source ID.

e (unlabeled) (anything that is either float or ()->float): Multiplicative factor.

e (unlabeled) (source)

4.3.4 bpm

(7id:string, 7every:int, source)->source
WARNING: This is only EXPERIMENTAL!
Detect the BPM.

e id (string — defaults to ""): Force the value of the source ID.
e every (int — defaults to 500)

e (unlabeled) (source)

4.3.5 clip

(7id:string, 7min:float, ?max:float, source)->source
Clip sound.

e id (string — defaults to ""): Force the value of the source ID.
e min (float — defaults to -0.999): Minimal acceptable value.
e max (float — defaults to 0.999): Maximal acceptable value.

e (unlabeled) (source)

4.3.6 comb

(7id:string, 7delay:float, 7feedback:’a, source)->source where ’a is either
float or ()->float
Comb filter.

e id (string — defaults to ""): Force the value of the source ID.
e delay (float — defaults to 0.001): Delay in seconds.

e feedback (anything that is either float or ()->float — defaults to -6.): Feedback
coefficient in dB.

e (unlabeled) (source)

4.3.7 compand

(?7id:string, ?mu:float, source)->source
Compand the signal

e id (string — defaults to ""): Force the value of the source ID.
e mu (float — defaults to 1.)

e (unlabeled) (source)

4.3. SOURCE / SOUND PROCESSING 51

4.3.8 compress

(7id:string, 7ratio:float, 7attack:’a, 7release:’b, 7threshold:’c, 7knee:’d,
?rms_window:float, 7gain:’e, ?debug:bool, source)->source where ’a/’b/’c/’d/’e is
either float or ()->float

Compress the signal.

id (string — defaults to ""): Force the value of the source ID.
ratio (float — defaults to 2.): Gain reduction ratio (n:1).

attack (anything that is either float or ()->float — defaults to 100.): Attack
time (ms).

release (anything that is either float or ()->float — defaults to 400.): Release
time (ms).

threshold (anything that is either float or ()->float — defaults to -10.):
Threshold level (dB).

knee (anything that is either float or ()->float — defaults to 1.): Knee radius
(dB).

rms_window (float — defaults to 0.1): Window for computing RMS (in sec).

gain (anything that is either float or ()->float — defaultsto 0.): Additional gain
(dB).

debug (bool — defaults to false)

(unlabeled) (source)

4.3.9 compress.exponential

(?id:string, ?mu:float, source)->source
Exponential compressor.

id (string — defaults to ""): Force the value of the source ID.
mu (float — defaults to 2.): Exponential compression factor (typically ¢ 1).

(unlabeled) (source)

4.3.10 cross

(7id:string, ?duration:float, 7inhibit:float, ?minimum:float, ((source,
source)->source), source)->source

Generic cross operator, allowing the composition of the N last seconds of a track with the
beginning of the next track.

id (string — defaults to ""): Force the value of the source ID.

duration (float — defaults to 5.): Duration in seconds of the crossed end of track. This
value can be set on a per-file basis using the metadata field 'liq_start_next.

inhibit (float — defaults to -1.): Minimum delay between two transitions. It is useful in
order to avoid that a transition is triggered on top of another when an end-of-track occurs
in the first one. Negative values mean ’same as duration’.

52 CHAPTER 4. REFERENCE

e minimum (float — defaults to -1.): Minimum duration (in sec.) for a cross: If the track
ends without any warning (e.g. in case of skip) there may not be enough data for a decent
composition. Set to 0. to avoid having transitions after skips, or more to avoid transitions
on short tracks. With the negative default, transitions always occur.

e (unlabeled) ((source, source)->source): Composition of an end of track and the next
track.

e (unlabeled) (source)

4.3.11 echo

(7id:string, 7delay:float, 7feedback:’a, source)->source where ’a is either
float or ()->float
Add echo.

e id (string — defaults to ""): Force the value of the source ID.
e delay (float — defaults to 0.5): Delay in seconds.

e feedback (anything that is either float or ()->float — defaults to -6.): Feedback
coefficient in dB (j= 0).

e (unlabeled) (source)

4.3.12 fade.final

(?id:string, 7duration:float, 7type:string, source)->source
Fade a stream to silence.

e id (string — defaults to ""): Force the value of the source ID.
e duration (float — defaults to 3.)

e (unlabeled) (source)

4.3.13 fade.in

(?id:string, 7duration:float, 7type:string, source)->source
Fade the beginning of tracks. Metadata ’'liq_fade_in’ can be used to set the duration for a
specific track (float in seconds).

e id (string — defaults to ""): Force the value of the source ID.
e duration (float — defaults to 3.)

e (unlabeled) (source)

4.3.14 fade.initial

(?id:string, 7duration:float, 7type:string, source)->source
Fade the beginning of a stream.

e id (string — defaults to ""): Force the value of the source ID.
e duration (float — defaults to 3.)

e (unlabeled) (source)

4.3. SOURCE / SOUND PROCESSING 53

4.3.15 fade.out

(?7id:string, 7duration:float, 7type:string, source)->source
Fade the end of tracks. Metadata ’lig_fade_out’ can be used to set the duration for a specific
track (float in seconds).

e id (string — defaults to ""): Force the value of the source ID.
e duration (float — defaults to 3.)

e (unlabeled) (source)

4.3.16 filter

(?id:string, ~freq:’a, 7q:’b, ~mode:string, 7wetness:’c, source)->source where
a/’b/’c is either float or ()->float
Perform several kinds of filtering on the signal

e id (string — defaults to ""): Force the value of the source ID.

e freq (anything that is either float or ()->float)

e g (anything that is either float or ()->float — defaults to 1.)
e mode (string): low—high—band—mnotch

e wetness (anything that is either float or ()->float — defaults to 1.): How much
of the original signal should be added (1. means only filtered and 0. means only original
signal).

e (unlabeled) (source)

4.3.17 filter.fir

(?id:string, ~frequency:float, ~beta:float, 7coeffs:int, ?debug:bool,
source)->source
Low-pass FIR filter.

e id (string — defaults to ""): Force the value of the source ID.

frequency (float): Corner frequency (frequency at which the response is 0.5 = -6 dB, Hz)
e beta (float): Beta (0 1)

e coeffs (int — defaults to 255): Number of coefficients

e debug (bool — defaults to false): Debug output

e (unlabeled) (source)

4.3.18 filter.iir.butterworth.bandpass

(?id:string, ~frequencyl:float, ~frequency2:float, 7order:int, ?debug:bool,
source)->source

IIR filter

e id (string — defaults to ""): Force the value of the source ID.

e frequencyl (float): First corner frequency

o4 CHAPTER 4. REFERENCE

frequency?2 (float): Second corner frequency

e order (int — defaults to 4): Filter order

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.19 filter.iir.butterworth.bandstop

(?7id:string, ~frequencyl:float, ~frequency2:float, 7order:int, 7debug:bool,
source)->source

IIR filter

e id (string — defaults to ""): Force the value of the source ID.

e frequencyl (float): First corner frequency

frequency2 (float): Second corner frequency

e order (int — defaults to 4): Filter order

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.20 filter.iir.butterworth.high

(?id:string, ~frequency:float, 7order:int, ?debug:bool, source)->source
IIR filter

e id (string — defaults to ""): Force the value of the source ID.
e frequency (float): Corner frequency
e order (int — defaults to 4): Filter order

e debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.21 filter.iir.butterworth.low

(?id:string, ~frequency:float, 7order:int, ?debug:bool, source)->source
IIR filter

e id (string — defaults to ""): Force the value of the source ID.
e frequency (float): Corner frequency

e order (int — defaults to 4): Filter order

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3. SOURCE / SOUND PROCESSING

4.3.22 filter.iir.eq.allpass

(?id:string, ~frequency:float, ?bandwidth:float, ?debug:bool, source)->source
All pass biquad filter.

e id (string — defaults to ""): Force the value of the source ID.

e frequency (float): Center frequency

bandwidth (float — defaults to 1.): Bandwidth (in octaves)

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.23 filter.iir.eq.bandpass

(7id:string, ~frequency:float, ?bandwidth:float, ?debug:bool, source)->source
Band pass biquad filter.

e id (string — defaults to ""): Force the value of the source ID.
e frequency (float): Center frequency

e bandwidth (float — defaults to 1.): Bandwidth (in octaves)

e debug (bool — defaults to false): Debug output

e (unlabeled) (source)

4.3.24 filter.iir.eq.high

(?id:string, ~frequency:float, 7q:float, ?7debug:bool, source)->source
High pass biquad filter.

e id (string — defaults to ""): Force the value of the source ID.

e frequency (float): Corner frequency

q (float — defaults to 1.): Q

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.25 filter.iir.eq.highshelf

(?7id:string, ~frequency:float, ?slope:float, 7debug:bool, source)->source
High shelf biquad filter.

e id (string — defaults to ""): Force the value of the source ID.

e frequency (float): Center frequency

slope (float — defaults to 1.): Shelf slope (in dB/octave)

debug (bool — defaults to false): Debug output

(unlabeled) (source)

o6 CHAPTER 4. REFERENCE

4.3.26 filter.iir.eq.low

(?id:string, ~frequency:float, 7q:float, 7debug:bool, source)->source
Low pass biquad filter.

e id (string — defaults to ""): Force the value of the source ID.
e frequency (float): Corner frequency
e q (float — defaults to 1.): Q

e debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.27 filter.iir.eq.lowshelf

(?id:string, ~frequency:float, 7slope:float, 7debug:bool, source)->source
Low shelf biquad filter.

e id (string — defaults to ""): Force the value of the source ID.

e frequency (float): Corner frequency

slope (float — defaults to 1.): Shelf slope (dB/octave)

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.28 filter.iir.eq.notch

(7id:string, ~frequency:float, 7bandwidth:float, ?debug:bool, source)->source
Band pass biquad filter.

e id (string — defaults to ""): Force the value of the source ID.

e frequency (float): Center frequency

bandwidth (float — defaults to 0.333333333333): Bandwidth (in octaves)

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.29 filter.iir.eq.peak

(?id:string, ~frequency:float, 7bandwidth:float, ?gain:float, ?7debug:bool,
source)->source

Peak EQ biquad filter.

e id (string — defaults to ""): Force the value of the source ID.

frequency (float): Center frequency

bandwidth (float — defaults to 0.333333333333): Bandwidth (in octaves)

e gain (float — defaults to 1.): Gain (in dB)

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3. SOURCE / SOUND PROCESSING 57

4.3.30 filter.iir.resonator.bandpass

(?id:string, ~frequency:float, 7q:float, ?7debug:bool, source)->source
IIR filter

e id (string — defaults to ""): Force the value of the source ID.

e frequency (float): Corner frequency

q (float — defaults to 60.): Quality factor

debug (bool — defaults to false): Debug output

(unlabeled) (source)

4.3.31 flanger

(7id:string, 7delay:float, 7freq:’a, 7feedback:’b, source)->source where ’a/’b
is either float or ()->float
Flanger effect.

e id (string — defaults to ""): Force the value of the source ID.
e delay (float — defaults to 0.001): Delay in seconds.

e freq (anything that is either float or ()->float — defaults to 0.5): Frequency in
Hz.

e feedback (anything that is either float or ()->float — defaults to 0.): Feedback
coefficient in dB.

e (unlabeled) (source)

4.3.32 insert_metadata

(?id:string, source)->source
Interactively insert metadata using the command jid;.insert keyl="vall” key2="val2”,. ..

e id (string — defaults to ""): Force the value of the source ID.

e (unlabeled) (source)

4.3.33 limit

(?id:string, ?7ratio:float, 7attack:’a, 7release:’b, 7threshold:’c, 7knee:’d,
?rms_window:float, 7gain:’e, 7debug:bool, source)->source where ’a/’b/’c/’d/’e is
either float or ()->float

Limit the signal.

e id (string — defaults to ""): Force the value of the source ID.
e ratio (float — defaults to 20.): Gain reduction ratio (n:1).

e attack (anything that is either float or ()->float — defaults to 100.): Attack
time (ms).

e release (anything that is either float or ()->float — defaults to 400.): Release
time (ms).

o8

CHAPTER 4. REFERENCE
threshold (anything that is either float or ()->float — defaults to =-10.):
Threshold level (dB).

knee (anything that is either float or ()->float — defaults to 1.): Knee radius
(dB).

rms_window (float — defaults to 0.1): Window for computing RMS (in sec).

gain (anything that is either float or ()->float — defaultsto 0.): Additional gain
(dB).

debug (bool — defaults to false)

(unlabeled) (source)

4.3.34 mean

(?7id:string, 7?channels:[int], source)->source

Compute the mean of a list of audio channels and use it for all of them.
e id (string — defaults to ""): Force the value of the source ID.
e channels ([int] — defaults to [0; 1 1): List of channels to compute the means.

e (unlabeled) (source)

4.3.35 mix

(7id:string, [source])->source

Mixing table controllable via the telnet interface.

e id (string — defaults to ""): Force the value of the source ID.

e (unlabeled) ([source])

4.3.36 normalize

(?id:string, 7target:’a, ?window:float, 7k_up:’b, 7k._down:’c, ?threshold:’d,
?gain min:’e, ?gainmax:’f, 7debug:bool, source)->source where ’a/’b/’c/’d/’e/’f
is either float or ()->float

Normalize the signal

id (string — defaults to ""): Force the value of the source ID.

target (anything that is either float or ()->float — defaults to -13.): Desired
RMS (dB).

window (float — defaults to 0.1): Duration of the window used to compute the current
RMS power (second).

k_up (anything that is either float or ()->float — defaults to 0.005): Coefficient
when the power must go up (0 | k_up i1, slowest to fastest).

k down (anything that is either float or ()->float — defaults to 0.1): Coefficient
when the power must go down (0 j k_down j 1, slowest to fastest).

threshold (anything that is either float or ()->float — defaults to -40.): Mini-
mal RMS for activaing gain control (dB).

4.3. SOURCE / SOUND PROCESSING 59

gain min (anything that is either float or ()->float — defaults to -6.): Minimal
gain value (dB).

gain max (anything that is either float or ()->float — defaults to 6.): Maximal
gain value (dB).

debug (bool — defaults to false): Show coefficients.

(unlabeled) (source)

4.3.37 pan

(?id:string, ?pan:’a, 7field:’b, source)->source where ’a/’b is either float or
()->float
swap two channels

id (string — defaults to ""): Force the value of the source ID.
pan (anything that is either float or ()->float — defaults to 0.): Pan (-1 pan 1)

field (anything that is either float or ()->float — defaults to 90.): Field width
(0 j field j 90) (in degrees)

(unlabeled) (source)

4.3.38 smart_cross

(?id:string, 7duration:float, 7inhibit:float, ?minimum:float, ?width:float,
?conservative:bool, ((float, float, [(string*string)], [(string*string)],
source, source)->source), source)->source

Cross operator, allowing the composition of the N last seconds of a track with the beginning
of the next track, using a transition function depending on the relative power of the signal before
and after the end of track.

id (string — defaults to ""): Force the value of the source ID.
duration (float — defaults to 5.): Duration in seconds of the crossed end of track.

inhibit (float — defaults to -1.): Minimum delay between two transitions. It is useful in
order to avoid that a transition is triggered on top of another when an end-of-track occurs in
the first one. Negative values mean ’same as duration’. Warning: zero inhibition can cause
infinite loops.

minimum (float — defaults to -1.): Minimum duration (in sec.) for a cross: If the track
ends without any warning (e.g. in case of skip) there may not be enough data for a decent
composition. Set to 0. to avoid having transitions after skips, or more to avoid transitions
on short tracks. With the negative default, transitions always occur.

width (float — defaults to 1.): Width of the power computation window.

conservative (bool — defaults to false): Do not trust remaining time estimations, always
buffering data in advance. This avoids being tricked by skips, either manual or caused by
skip_blank().

(unlabeled) ((float, float, [(string*string)], [(string*string)], source,
source)->source): Transition function, composing from the end of a track and the next
track. It also takes the power of the signal before and after the transition, and the metadata.

(unlabeled) (source)

60 CHAPTER 4. REFERENCE

4.3.39 soundtouch

(?7id:string, 7rate:’a, 7tempo:’b, ?pitch:’c, source)->source where ’a/’b/’c is
either float or ()->float

WARNING: This is only EXPERIMENTAL!

Change the rate, the tempo or the pitch of the sound.

e id (string — defaults to ""): Force the value of the source ID.
e rate (anything that is either float or ()->float — defaults to 1.)
e tempo (anything that is either float or ()->float — defaults to 1.)

e pitch (anything that is either float or ()->float — defaults to 1.)

(unlabeled) (source)

4.3.40 swap

(7id:string, 7?chanl:int, ?chan2:int, source)->source
swap two channels

e id (string — defaults to ""): Force the value of the source ID.
e chanl (int — defaults to 0): Channel one
e chan2 (int — defaults to 1): Channel two

e (unlabeled) (source)

4.4 Source / Track Processing

4.4.1 append

(7id:string, 7merge:bool, source, (([(string*string)])->source))->source
Append an extra track to every track.Set the metadata ’lig-append’ to ’false’ to inhibit ap-
pending on one track.

e id (string — defaults to ""): Force the value of the source ID.
e merge (bool — defaults to false): Merge the track with its appended track.
e (unlabeled) (source)

e (unlabeled) (([(string*string)])->source): Given the metadata, build the source pro-
ducing the track to append. This source is allowed to fail (produce nothing) if no relevant
track is to be appended.

4.4.2 delay

(7id:string, float, source)->source
Prevents the child from being ready again too fast after a end of track

e id (string — defaults to ""): Force the value of the source ID.

e (unlabeled) (float): The source won’t be ready less than this amount of seconds after any
end of track

e (unlabeled) (source)

4.4. SOURCE / TRACK PROCESSING 61

4.4.3 eat_blank

(7id:string, 7at_beginning:bool, 7threshold:float, 7length:float, source)->source
Eat blanks (i.e. drop the contents of the stream until it is not blank again).

e id (string — defaults to ""): Force the value of the source ID.

e at_beginning (bool — defaults to false): Only eat at the beginning of a track.

threshold (float — defaults to -40.): Power in decibels under which the stream is con-
sidered silent.

length (float — defaults to 20.): Maximum silence length allowed, in seconds.

(unlabeled) (source)

4.4.4 fallback

(7id:string, 7track_sensitive:bool, ?before:float, 7transitions:[(source,
source)->source], [source])->source
At the beginning of each track, select the first ready child.

e id (string — defaults to ""): Force the value of the source ID.
e track_sensitive (bool — defaults to true): Re-select only on end of tracks.

e before (float — defaults to 0.): EXPERIMENTAL: for track_sensitive switches, trigger
transitions before the end of track.

e transitions ([(source, source)->source] — defaults to [1): Transition functions,
padded with (fun (x,y) -; v) functions.

e (unlabeled) ([sourcel): Select the first ready source in this list.

4.4.5 on_blank

(7id:string, (()->unit), ?7threshold:float, 7length:float, source)->source
Calls a given handler when detecting a blank.

e id (string — defaults to ""): Force the value of the source ID.

(unlabeled) (()->unit)

threshold (float — defaults to -40.): Power in decibels under which the stream is con-
sidered silent.

length (float — defaults to 20.): Maximum silence length allowed, in seconds.

(unlabeled) (source)

4.4.6 on_metadata

(7id:string, (([(stringxstring)])->unit), source)->source
Call a given handler on metadata packets.

e id (string — defaults to ""): Force the value of the source ID.

e (unlabeled) (([(string*string)])->unit): Function called on every metadata packet in
the stream. It should be fast because it is ran in the main thread.

e (unlabeled) (source)

62 CHAPTER 4. REFERENCE

4.4.7 on_track

(?id:string, (([(string*string)])->unit), source)->source
Call a given handler on new tracks.

e id (string — defaults to ""): Force the value of the source ID.
e (unlabeled) (([(string*string)])->unit): Function called on every beginning of track
in the stream, with the corresponding metadata as argument. It should be fast because it is

ran in the main thread.

e (unlabeled) (source)

4.4.8 prepend

(?id:string, 7merge:bool, source, (([(string*string)])->source))->source

Prepend an extra track before every track. Set the metadata ’liq_prepend’ to ’false’ to inhibit
prepending on one track.

e id (string — defaults to ""): Force the value of the source ID.

e merge (bool — defaults to false): Merge the track with its appended track.

e (unlabeled) (source)

e (unlabeled) (([(string*string)])->source): Given the metadata, build the source pro-

ducing the track to prepend. This source is allowed to fail (produce nothing) if no relevant
track is to be appended. However, success must be immediate.

4.4.9 random

(7id:string, 7track_sensitive:bool, 7before:float, 7transitions: [(source,
source)->source], ?weights:[int], 7strict:bool, [source])->source
At the beginning of every track, select a random ready child.

e id (string — defaults to ""): Force the value of the source ID.
e track_sensitive (bool — defaults to true): Re-select only on end of tracks.

e before (float — defaults to 0.): EXPERIMENTAL: for track_sensitive switches, trigger
transitions before the end of track.

e transitions ([(source, source)->source] — defaults to []1): Transition functions,
padded with (fun (x,y) -j y) functions.

e weights ([int] — defaults to [1): Weights of the children in the choice.

e strict (bool — defaults to false): Do not use random but cycle over the uniform distri-
bution.

e (unlabeled) ([source])

4.4. SOURCE / TRACK PROCESSING 63

4.4.10 rewrite_metadata

(?id:string, [(string*string)], 7insert_missing:bool, source)->source
Rewrite metadata on the fly.

e id (string — defaults to ""): Force the value of the source ID.
e (unlabeled) ([(string*string)]): List of (target,value) rewriting rules.

e insert missing (bool — defaults to true): Treat track beginnings without metadata as
having empty ones.

e (unlabeled) (source)

4.4.11 sequence

(7id:string, 7merge:bool, [source])->source
Play only one track of every successive source, except for the last one which is played as much
as available.

e id (string — defaults to ""): Force the value of the source ID.
e merge (bool — defaults to false)

e (unlabeled) ([source])

4.4.12 skip_blank

(7id:string, 7threshold:float, ?length:float, source)->source
Skip track when detecting a blank.

e id (string — defaults to ""): Force the value of the source ID.

e threshold (float — defaults to -40.): Power in decibels under which the stream is con-
sidered silent.

e length (float — defaults to 20.): Maximum silence length allowed, in seconds.

e (unlabeled) (source)

4.4.13 store_metadata
(7id:string, 7size:int, source)->source

Keep track of the last N metadata packets in the stream, and make the history available via a
server command.

e id (string — defaults to ""): Force the value of the source ID.

e size (int — defaults to 10): Size of the history

e (unlabeled) (source)

64

CHAPTER 4. REFERENCE

4.4.14 strip_blank

(7id:string, 7threshold:float, 7length:float, source)->source
Make the source unavailable when it is streaming blank.

id (string — defaults to ""): Force the value of the source ID.

threshold (float — defaults to -40.): Power in decibels under which the stream is con-
sidered silent.

length (float — defaults to 20.): Maximum silence length allowed, in seconds.

(unlabeled) (source)

4.4.15 switch

(?id:string, ?track_sensitive:bool, 7before:float, ?transitions: [(source,
source)->source], ?single: [bool], [((()->bool)*source)])->source
At the beginning of a track, select the first source whose predicate is true.

4.5

id (string — defaults to ""): Force the value of the source ID.
track_sensitive (bool — defaults to true): Re-select only on end of tracks.

before (float — defaults to 0.): EXPERIMENTAL: for track_sensitive switches, trigger
transitions before the end of track.

transitions ([(source, source)->source] — defaults to [1): Transition functions,
padded with (fun (x,y) -; y) functions.

single ([bool] — defaults to [1): Forbid the selection of a branch for two tracks in a
row. The empty list stands for [false,.. . false].

(unlabeled) ([((()->bool)*source)]): Sources with the predicate telling when they can
be played.

Source / Visualization

4.5.1 vumeter

(?7id:string, ?scroll:bool, source)->source
VU meter (display the volume).

id (string — defaults to ""): Force the value of the source ID.
scroll (bool — defaults to false): Scroll.

(unlabeled) (source)

4.6 Bool
4.6.1 !=
(’a, ’a)->bool where ’a is an orderable type

Comparison of comparable values.

4.7. CONTROL

4.6.2 <

(’a, ’a)->bool where ’a is an orderable
Comparison of comparable values.

4.6.3 <=

(’a, ’a)->bool where ’a is an orderable
Comparison of comparable values.

4.6.4 ==

(’a, ’a)->bool where ’a is an orderable
Comparison of comparable values.

4.6.5 >

(’a, ’a)->bool where ’a is an orderable
Comparison of comparable values.

4.6.6 >=

(’a, ’a)->bool where ’a is an orderable
Comparison of comparable values.

4.6.7 and

(bool, bool)->bool
Return the conjunction of its arguments

4.6.8 not

(bool)->bool
Returns the negation of its argument.

4.6.9 or

(bool, bool)->bool
Return the disjunction of its arguments

4.6.10 random.bool

()->bool
Generate a random value.

4.7 Control

4.7.1 add_timeout

(7name:string, float, (()->float))->unit

type

type

type

type

type

65

Call a function every N seconds. If the output of the function is a positive float it will be used

as the new delay. The name of the created thread can be chosen.

66 CHAPTER 4. REFERENCE

4.7.2 ignore

(’a)->unit
Convert anything to unit, preventing warnings.

4.8 Interaction

4.8.1 interactive_float

(string, float)->()->float
Read a float from an interactive input.

4.8.2 print

(?7newline:bool, ’a)->unit
Print on standard output.

4.9 Liquidsoap

4.9.1 add_protocol

(string, ((string, float)->[stringl))->unit
Register a new protocol.

4.9.2 get

(~default:’a, string)->’a where ’a is bool, int, float, string or [string]
Get a setting’s value.

4.9.3 request

(?indicators: [string], 7persistent:bool, string)->request
Create a request.

4.9.4 set

(string, ’a)->unit where ’a is bool, int, float, string or [string]
Change some setting.

4.9.5 shutdown

() ->unit
Shutdown the application.

4.9.6 source.id

(source)->string
Get source’s id.

4.9.7 source.skip

(source)->unit
Skip source’s current song.

4.10. LIST

4.10 List

4.10.1 _[]
(string, [(string*string)])->string

1[k] returns v for the first item (k,v) in L
4.10.2 list.fold
((C’a, ’b)->’a), ’a, [’b])->’a

Fold a function on every element of a list.
4.10.3 list.hd
([string])->string

Returns the head (first element) of a list.
4.10.4 list.iter
(((’a)->unit), [’al)->unit

Execute a function on every element of a list.
4.10.5 list.length
([’al)->int

Returns the length (number of elements) of a list.
4.10.6 list.map
((Ca)->’b), [’al)->[’b]

Map a function on every element of a list.
4.10.7 list.mem

(’a, [’al)->bool where ’a is an orderable type
Checks if an element is present within a list.

4.10.8 list.nth

([’al, int)->’a
Returns the nth element of a list.

4.10.9 list.tl
([’al)->[’a]

Returns the list without its first element.

4.11 Math

4.11.1 *

(’a, ’a)->’a where ’a is a number type
Multiplication of numbers.

67

68 CHAPTER 4.

4.11.2 +

(’a, ’a)->’a where ’a is a number type
Addition of numbers.

4.11.3 -

(’a, ’a)->’a where ’a is a number type
Substraction of numbers.

4.11.4 /

(’a, ’a)->’a where ’a is a number type
Division of numbers.

4.11.5 abs

(’a)->’a where ’a is a number type
Absolute value.

4.11.6 bool_of _float
(float)->bool

Convert a float to a bool.
4.11.7 bool_of_int
(int)->bool

Convert an int to a bool.
4.11.8 dB_of_lin
(float)->float

Convert linear scale into decibels.
4.11.9 float_of_int
(int)->float

Convert an int to a float.

4.11.10 int_of float
(float)->int

Convert a float to a int.
4.11.11 lin of dB
(float)->float

Convert decibels into linear scale.

4.11.12 pow

(’a, ’a)->’a where ’a is a number type
Exponentiation of numbers.

REFERENCE

4.12. STRING

4.11.13 random.float

(?min:float, ?max:float)->float
Generate a random value.

4.12 String

4.12.1 %

(string, [(string*string)])->string
(pattern % [...,(k,v),...]) replaces in pattern occurences of:
- ’$(k)’ into "v”;

- ’$(if $(k2),”a”,”b”)" into ”a” if k2 is found in the list, ”b” otherwise.

4.12.2 ~

(string, string)->string
Concatenate strings.

4.12.3 bool of string

(7default:bool, string)->bool
Convert a string to a bool.

4.12.4 float_of_string

(?default:float, string)->float
Convert a string to a float.

4.12.5 int_of string

(?default:int, string)->int
Convert a string to a int.

4.12.6 quote
(string)->string
Escape shell metacharacters.
4.12.7 string.concat
(?separator:string, [string])->string
Concatenate strings.
4.12.8 string.split
(~separator:string, string)->[string]

Split a string at ’separator’.

4.12.9 string of

(’a)->string
Convert a value into a string.

69

70 CHAPTER 4.

4.13 System

4.13.1 argv
(?default:string, int)->string

Get command-line parameters.
4.13.2 execute
(string, ?string)->[string]

Executes a command.

4.13.3 get_process_lines
(string)->[string]

Perform a shell call and return the list of its output lines.
4.13.4 get_process_output
(string)->string

Perform a shell call and return its output.
4.13.5 log
(?label:string, 7level:int, string)->unit

Log a message.

4.13.6 on_shutdown
((O->unit))->unit

Run a callback when Liquidsoap shuts down.
4.13.7 shutdown
() ->unit

Terminates the whole liquidsoap process.
4.13.8 system

(string)->unit
Shell command call.

REFERENCE

	 Liquidsoap
	Liquidsoap
	Features
	Non-Features

	Installation
	Install from source tarballs
	Subversion repository (and other distributions)
	Debian
	Ubuntu source install
	Gentoo
	OSX

	Installation on an Ubuntu system
	Known bugs

	Quickstart
	The Internet radio toolchain
	Starting to use Liquidsoap
	One-line expressions
	Script files
	A simple radio
	What's next?

	A complete case analysis
	Advanced techniques
	Interaction with the server
	Daemon mode

	Concepts
	Sources
	Execution model
	An abstract notion of files: requests

	Liquidsoap's scripting language
	Constants
	Expressions
	Types
	Time intervals
	Includes

	Liquidsoap settings
	Cookbook
	Files
	Transcoding
	Scheduling
	Force a file/playlist to be played at least every XX minutes
	Handle special events: mix or switch
	Unix interface, dynamic requests
	Dynamic input with harbor
	Lastfm input
	Transitions
	Alsa unbuffered output

	Frequently Asked Questions
	I started receiving this log on my streams: We must catchup 0.44 seconds (we've been late for 100 rounds)! What does it mean?

	 Advanced topics
	Blank detection
	Distributed encoding

	 Other tools
	Bubble
	Bottle

	 Reference
	Source / Input
	blank
	input.alsa
	input.harbor
	input.http
	input.lastfm
	input.oss
	input.portaudio
	noise
	playlist
	playlist.safe
	request.dynamic
	request.equeue
	request.queue
	saw
	sine
	single
	square

	Source / Output
	output.alsa
	output.ao
	output.dummy
	output.file.vorbis
	output.file.vorbis.abr
	output.file.vorbis.cbr
	output.file.wav
	output.icecast.vorbis
	output.icecast.vorbis.abr
	output.icecast.vorbis.cbr
	output.oss
	output.portaudio

	Source / Sound Processing
	accelerate
	add
	amplify
	bpm
	clip
	comb
	compand
	compress
	compress.exponential
	cross
	echo
	fade.final
	fade.in
	fade.initial
	fade.out
	filter
	filter.fir
	filter.iir.butterworth.bandpass
	filter.iir.butterworth.bandstop
	filter.iir.butterworth.high
	filter.iir.butterworth.low
	filter.iir.eq.allpass
	filter.iir.eq.bandpass
	filter.iir.eq.high
	filter.iir.eq.highshelf
	filter.iir.eq.low
	filter.iir.eq.lowshelf
	filter.iir.eq.notch
	filter.iir.eq.peak
	filter.iir.resonator.bandpass
	flanger
	insert_metadata
	limit
	mean
	mix
	normalize
	pan
	smart_cross
	soundtouch
	swap

	Source / Track Processing
	append
	delay
	eat_blank
	fallback
	on_blank
	on_metadata
	on_track
	prepend
	random
	rewrite_metadata
	sequence
	skip_blank
	store_metadata
	strip_blank
	switch

	Source / Visualization
	vumeter

	Bool
	!=
	<
	<=
	==
	>
	>=
	and
	not
	or
	random.bool

	Control
	add_timeout
	ignore

	Interaction
	interactive_float
	print

	Liquidsoap
	add_protocol
	get
	request
	set
	shutdown
	source.id
	source.skip

	List
	[]
	list.fold
	list.hd
	list.iter
	list.length
	list.map
	list.mem
	list.nth
	list.tl

	Math
	*
	+
	-
	/
	abs
	bool_of_float
	bool_of_int
	dB_of_lin
	float_of_int
	int_of_float
	lin_of_dB
	pow
	random.float

	String
	%
	ˆ
	bool_of_string
	float_of_string
	int_of_string
	quote
	string.concat
	string.split
	string_of

	System
	argv
	execute
	get_process_lines
	get_process_output
	log
	on_shutdown
	shutdown
	system

