
Liquidsoap manual

David Baelde and Samuel Mimram

October 15, 2007

2

Contents

1 Liquidsoap 5
1.1 Liquidsoap . 5

1.1.1 Features . 5
1.1.2 Non-Features . 6
1.1.3 History . 6

1.2 Installation . 7
1.2.1 Install from source tarballs . 7
1.2.2 Subversion repository (and other distributions) 7
1.2.3 Debian . 8
1.2.4 Gentoo . 8
1.2.5 OSX . 8

1.3 Quickstart . 8
1.3.1 The internet radio toolchain . 8
1.3.2 Starting to use liquidsoap . 9
1.3.3 That source is fallible??! . 12
1.3.4 Daemon mode . 12
1.3.5 What’s next? . 12

1.4 Concepts . 12
1.4.1 Sources . 12
1.4.2 Execution model . 14
1.4.3 An abstract notion of files: requests . 14

1.5 Liquidsoap’s scripting language . 15
1.5.1 Constants . 15
1.5.2 Settings . 16
1.5.3 Expressions . 16
1.5.4 Types . 17
1.5.5 Time intervals . 17

1.6 Liquidsoap settings . 18
1.6.1 Logging . 18
1.6.2 Daemon . 18
1.6.3 Server . 19
1.6.4 Misc . 19

1.7 Cookbook . 19
1.7.1 Files . 20
1.7.2 Scheduling . 20
1.7.3 Fancy effects . 20
1.7.4 Unix interface, dynamic requests . 20
1.7.5 Transitions . 21

3

4 CONTENTS

2 Advanced topics 23
2.1 Using the telnet interface . 23

2.1.1 How to connect to the telnet server . 23
2.1.2 Scripting for the telnet server . 23
2.1.3 General commands . 23
2.1.4 Playlist commands . 25
2.1.5 Output commands . 26
2.1.6 Queue commands . 27

2.2 Blank detection . 28
2.3 Distributed encoding . 28

3 Other tools 31
3.1 Bubble . 31
3.2 Bottle . 31

4 Reference 33
4.1 % . 33
4.2 ˆ . 33
4.3 add . 33
4.4 add protocol . 33
4.5 and . 33
4.6 append . 34
4.7 assoc . 34
4.8 blank . 34
4.9 change volume . 34
4.10 cross . 34
4.11 delay . 35
4.12 fade.final . 35
4.13 fade.in . 35
4.14 fade.initial . 35
4.15 fade.out . 36
4.16 fallback . 36
4.17 filter . 36
4.18 get process lines . 36
4.19 get process output . 36
4.20 input.http . 37
4.21 input.http.mp3 . 37
4.22 mix . 37
4.23 on blank . 37
4.24 on metadata . 38
4.25 or . 38
4.26 output.ao . 38
4.27 output.dummy . 38
4.28 output.icecast . 38
4.29 output.ogg . 39
4.30 output.wav . 39
4.31 pipe . 40
4.32 playlist . 40
4.33 playlist.safe . 40
4.34 prepend . 41
4.35 quote . 41
4.36 random . 41
4.37 request . 41
4.38 request.dynamic . 42

CONTENTS 5

4.39 request.equeue . 42
4.40 request.queue . 42
4.41 rewrite metadata . 42
4.42 sequence . 43
4.43 sine . 43
4.44 single . 43
4.45 skip blank . 43
4.46 store metadata . 44
4.47 strip blank . 44
4.48 switch . 44
4.49 system . 44
4.50 time in mod . 45

6 CONTENTS

Chapter 1

Liquidsoap

1.1 Liquidsoap

Liquidsoap is a powerful tool for building complex audio streaming systems, typically targetting
internet radios. It consists of a simple script language, which has a first-class notion of source
(basically a stream) and provides elementary source constructors and source compositions from
which you can build the streamer you want. This design makes liquidsoap flexible and easily
extensible.

We believe that liquidsoap is easy to use. For basic uses, the scripts simply consists of the
definition of a tree of sources. It is good to use liquidsoap even for simple streams which could
be produced by other tools, because it is extensible: when you want to make your stream more
complex, you are still able to stay in the same framework, and your script will remain maintainable.
Of course, this will require at some point a deeper understanding of liquidsoap and its scripting
language.

If you’re new to liquidsoap, you’d probably like to read about the installation procedure and
take the quickstart tour. Then you may also enjoy to learn more about the main concepts on
which liquidsoap is built. When you’ll master these concepts, you’ll only need to take a look at
the reference (scripting language, API and settings) and get a few ideas from the recipes to be
able to design whatever stream you need. Finally, have a look at the telnet tutorial to find out
how to interact in various ways with a running liquidsoap.

Liquidsoap is written in OCaml and is part of the savonet project.
Acknowledgement for the readers of the PDF version. The file you’re reading has been

automatically generated from savonet’s wiki. It can be useful to get directly there, in particular
if you need to copy a code snippet: http://savonet.sf.net/wiki/Liquidsoap.

Acknowledgement for the Wiki readers. There is a PDF file automatically generated
from selected pages of this wiki. It can be useful for printing, and is available in liquidsoap
distribution.

1.1.1 Features

Here are a few things you can easily achieve using Liquidsoap:

• Playing from files, playlists, or script playlists (plays the file chosen by an external program).

• Transparent remote file access; easy addition of file resolution protocols.

• Scheduling of many sources, depending on time, priorities, etc.

• Queuing of user requests.

• Supports arbitrary transitions: you can have fade, cross-fade, jingle insertion, etc.

7

http://savonet.sf.net/wiki/Liquidsoap

8 CHAPTER 1. LIQUIDSOAP

• Per-track settings of transitions via metadatas liq fade in, liq fade out, liq start next,
liq append and liq prepend.

• Input of other Icecast streams (Ogg/Vorbis or MP3): useful for switching to a live show.

• Blank detection.

• Definable event handlers on new tracks and excessive blank.

• Metadata rewriting.

• Multiple outputs in the same instance: you can have several quality settings, use several
media or even broadcast several contents from the same instance.

• Output to icecast and peercast (mp3/ogg) or a local file (wav/mp3/ogg).

• Output to speakers using libao.

• Output to ALSA speaker, input from ALSA microphone. There are some unfixed issues
there.

• Distributed encoding using RTP (but it’s unmaintained and experimental!)

• Arbitrary mixing of several sources together.

• Interactive control of many operators via telnet, or indirectly using perl/python scripts,
pyGtk GUI, web/irc interfaces (not released, mail us). . .

• Speech and sound synthesis.

If you need something else, it’s highly possible that you can have it – at least by programming
new sources/operators. Send us a mail, we’ll be happy to discuss these questions.

1.1.2 Non-Features

Liquidsoap is a flexible tool for generating audio streams, that’s all. We have used it for several
internet radio projects, and we know that this flexibility is useful. However, an internet radio
usually requires more than just an audio stream, and the other components cannot easily be built
from basic primitives as we do in liquidsoap for streams. We don’t have any magic solution for
these, although we sometimes have some nice tools which could be adapted to various uses.

Liquidsoap itself doesn’t have a nice GUI or any graphical programming environment. You’ll
have to write the script by hand, and the only possible interaction with a running liquidsoap is
the telnet server. However, we have modules for various languages (OCaml, Ruby, Python, Perl)
providing high-level communication with liquidsoap. And there is a graphical application using
the Python module for controlling a running liquidsoap: liguidsoap.

Liquidsoap doesn’t do any database or website stuff. It won’t index your audio files, it won’t
allow your users to score songs on the web, etc. However, liquidsoap makes the interfacing with
other tools easy, since it can call an external application (reading from the database) to get audio
tracks, another one (updating last-played information) to notify that some file has been successfully
played. The simplest example of this is bubble, RadioPi also has a more complex system of its
own along these lines.

1.1.3 History

• 0.3.0 brought a lot of improvements at all levels, polishing, uniformization and documenta-
tion.

• 0.2.0 was the first working release, not so unstable and already featuring the main good
ideas.

• 0.1.0 was the release we had to do at the end of the academic project, not working at all :p

1.2. INSTALLATION 9

1.2 Installation

Several ways of installing liquidsoap are possible. In most cases you can choose which features you
want. Here are liquidsoap’s dependencies (all OCaml libraries are distributed by Savonet, except
Camomile):

• ocamlfind (http://www.ocaml-programming.de/programming/findlib.html)

• ocaml-dtools

• ocaml-vorbis

• ocaml-shout

And also optional dependencies:

• ocaml-mad for mp3 decoding

• libid3tag (http://www.underbit.com/products/mad/) for reading mp3’s id3 metadata

• ocaml-mp3id3 for reading mp3’s id3 metadata

• camomile (http://camomile.sourceforge.net/) for detecting metadata encodings and re-
encoding them to utf8

• ocaml-lame for mp3 encoding

• ocaml-alsa for alsa input/output

• libortp (http://www.linphone.org/) for RTP input/output

• wget (http://www.gnu.org/software/wget/) for downloading remote files (http, https,
ftp)

• ufetch (provided by ocaml-fetch) for downloading remote files (smb, http, ftp)

• festival (http://www.cstr.ed.ac.uk/projects/festival/) for speech synthesis (say)

1.2.1 Install from source tarballs

The primary mean of stable distribution is source tarballs. They are available on the download
section (http://sourceforge.net/project/showfiles.php?group_id=89802) of the project’s
page on sourceforge. They all follow the GNU conventions, and are built and installed using the
common ./configure, make and make install.

1.2.2 Subversion repository (and other distributions)

If you want a cutting-edge version, you can use the subversion repository. To get a copy of it, just
run:

svn co https://svn.sourceforge.net/svnroot/savonet/trunk savonet

From every sub-project’s directory you can build and install the package using ./bootstrap,
./configure, make and optionally make install.

From the toplevel savonet directory you can also directly build a vanilla liquidsoap. It’s fast
and doesn’t require you to install the libraries. The steps to follow are simple:

Edit PACKAGES to choose which feature you want

./bootstrap

./configure

make

To install liquidsoap, you’ll usually need to type the following as root

make install

http://www.ocaml-programming.de/programming/findlib.html
http://www.underbit.com/products/mad/
http://camomile.sourceforge.net/
http://www.linphone.org/
http://www.gnu.org/software/wget/
http://www.cstr.ed.ac.uk/projects/festival/
http://sourceforge.net/project/showfiles.php?group_id=89802

10 CHAPTER 1. LIQUIDSOAP

1.2.3 Debian

Debian packages are available for some libraries on the download section (http://sourceforge.
net/project/showfiles.php?group_id=89802) of the project’s page on sourceforge. A .deb
package, for example toto.deb, can be installed using dpkg -i toto.deb.

The main libraries already entered the official Debian distribution, and we’re currently working
on packaging liquidsoap too.

1.2.4 Gentoo

The ebuilds available on our SVN are very outdated, but there is ongoing work on updating and
including them directly in the official distribution.

1.2.5 OSX

There have been successful installations on OSX (both Intel and PPC), using Fink and the Godi
distribution of OCaml. Claudio reports his two successes on the OSX page (http://savonet.sf.
net/wiki/InstallationOSX).

1.3 Quickstart

1.3.1 The internet radio toolchain

Liquidsoap is a general audio stream generator, but is mainly intended for internet radios. Before
starting with the proper liquidsoap tutorial let’s describe quickly the components of the internet
radio toolchain, in case the reader is not familiar with it.

The chain is made of:

• the stream generator (liquidsoap, ices (http://www.icecast.org/ices.php), . . .) which
creates an audio stream (ogg or mp3);

• the streaming media server (icecast (http://www.icecast.org), shoutcast, . . .) which re-
lays several streams from their sources to their listeners;

• the media player (xmms, winamp, . . .) which gets the audio stream from the streaming
media server and plays it to the listener’s speakers.

The stream is always passed from the source to the server, whether or not there are listeners.
It is then sent by the server to every listener. The more listeners you have, the more bandwidth
you need.

A source client is identified by its ”mount point” on the server. If you connect to the foo.ogg
mount point, the URL of your stream will be http://localhost:8000/foo.ogg – assuming that
your icecast is on localhost on port 8000.

You may have an already setup icecast server. Otherwise you can start the tutorial using liquid-
soap’s output to speakers, or immediately install and configure your icecast server. The configura-
tion typically consists in setting the admin and source passwords, in /etc/icecast2/icecast.xml.
These passwords should really be changed if your server is visible from the hostile internet, unless
you want people to kick your source as admins, or add their own source and steal your bandwidth.

You’ll have to provide liquidsoap with information about the icecast server, unless the default
values are OK: host (defaults to localhost), port (defaults to 8000, which is icecast’s default)
and source password (defaults to icecast’s default hackme).

Now, let’s create that audio stream.

http://sourceforge.net/project/showfiles.php?group_id=89802
http://sourceforge.net/project/showfiles.php?group_id=89802
http://savonet.sf.net/wiki/InstallationOSX
http://savonet.sf.net/wiki/InstallationOSX
http://www.icecast.org/ices.php
http://www.icecast.org
http://localhost:8000/foo.ogg

1.3. QUICKSTART 11

1.3.2 Starting to use liquidsoap

Liquidsoap is a script language. To use it, you have to write a script in some file, say myscript.liq,
and then run liquidsoap myscript.liq. You can also put #!/path/to/your/liquidsoap as the
first line of your script, you’ll then be able to run it by simply doing ./myscript.liq. Usually, the
path of the liquidsoap executable is /usr/bin/liquidsoap, and we’ll use this in the following.

Liquidsoap will write log messages in a file, and possibly in the console, depending on the
settings preamble of your script. In this tutorial, we’ll always use the same settings, for simplicity:

#!/usr/bin/liquidsoap

Put the log file in some directory where you have the write permission

set log.dir = "/tmp"

Print log messages to the console

set log.stdout = true

This can also be done by passing the -v option to liquidsoap

Lines starting with # are ignored, they are just comments. Those who know ruby will note
that this is not the only similarity with it’s syntax.

A simple example

In the first example we’ll play a playlist. Let’s put a list of audio files in playlist.pls: one
file per line, lines starting with a # are ignored. The following liquidsoap script plays that list in
shuffle mode:

#!/usr/bin/liquidsoap -v

set log.dir = "/tmp"

output = ouput.ao

Output via libao is the most portable and stable option.

You may also be able to use output.alsa.

If you have a configured icecast server,

uncomment the next two lines and edit the parameters

output = output.icecast(mount="foo.ogg",host="localhost",

port=8000,password="hackme")

output(playlist.safe("playlist.pls"))

Hopefully, you’re now listening to your playlist, via icecast or not. You may have noticed
that liquidsoap’s startup is quite slow, especially if you have a large playlist. That’s because we
used the playlist.safe source, which checks every file in the playlist and removes those which
cannot be decoded – and fails if none can. These checks are here because liquidsoap cares about
your stream and makes sure that it’ll never stop. Later in the tutorial we explain how to get safe
sources without using the heavy playlist.safe sources but a mix of unsafe playlist sources
and other safe sources.

In a liquidsoap script, you build source objects. Liquidsoap provides many functions for creat-
ing sources from scratch (e.g. playlist) and creating complex sources by wrapping simpler ones
(e.g. switch in the following example). Some of these functions (typically the output.*) create an
active source, which will continuously pull its children’s stream and output it to speakers, icecast,
etc. These active sources are the root of a liquidsoap instance, the sources which bring life into it.

12 CHAPTER 1. LIQUIDSOAP

A complex example

Now for a more complex example. The following script:

• sets up several outputs;

• plays different playlists during the day;

• inserts about 1 jingle every 5 songs;

• adds one special jingle at the beginning of every hour on top of the normal stream;

• plays user requests – done via the telnet server;

• and relays live shows, inserting jingles as transitions between live shows and the usual pro-
gram.

#!/usr/bin/liquidsoap -v

set log.dir = "/tmp"

A bunch of files and playlists,

supposedly all located in the same base dir.

base = "~/radio/"

default = single(base ^ "default.ogg")

day = playlist(base ^ "day.pls")

night = playlist(base ^ "night.pls")

jingles = playlist(base ^ "jingles.pls")

clock = single(base ^ "clock.ogg")

start = single(base ^ "live_start.ogg")

stop = single(base ^ "live_stop.ogg")

The automated stream

def radio

Play user requests if there are any,

otherwise one of our playlists,

and the default file if anything goes wrong.

src = fallback([request.queue(id="request"),

switch([({ 6h-22h }, day),

({ 22h-6h }, night)]),

default])

Add the normal jingles

src = random(weights=[1,5],[jingles, src])

And the clock jingle

add([src, switch([({0m0s},clock)])])

end

Add the ability to relay live shows

We first define the transition function

def transition(jingle,a,b)

add(normalize=false,

[fade.initial(b),

sequence(merge=true,

[blank(duration=1.),jingle,fallback([])]),

fade.final(a)])

end

1.3. QUICKSTART 13

full =

fallback(track_sensitive=false,

transitions=[transition(start), transition(stop)],

[input.http("http://localhost:8000/live.ogg"),

radio])

Output the full stream in OGG and MP3

output.icecast.mp3(mount="radio",full)

output.icecast(mount="radio.ogg",full)

Output the stream without live in OGG

output.icecast(mount="radio_nolive.ogg",radio)

To try this example you need to edit the file names. In order to witness the switch from one
playlist to another you can change the time intervals. If it is 16:42, try the intervals 0h-16h45
and 16h45-24h instead of 6h-22h and 22h-6h. To witness the clock jingle, you can ask for it to
be played every minute by using the 0s interval instead of 0m0s.

To try the transition to a live show you need to start a new stream on the live.ogg mount
of your server. You can send a playlist to it using the first example. To start a real live show you
can use darkice, or simply liquidsoap if you have a working ALSA input, with the following script:

#!/usr/bin/liquidsoap -v

set log.dir = "/tmp"

Get your microphone output and send it to icecast

Add other icecast parameters if needed

output.icecast(mount="live.ogg",input.alsa())

Interaction with the server

In the previous examples we set up a request.queue source to play user requests. To push
requests in that queue you need to interact with the telnet server, which also provides many other
services. By default it is only accessible from the host where liquidsoap runs. You can learn more
on that topic with the [[LiqTelnetTuto telnet tutorial] and settings description. Here is a sample
session:

dbaelde@selassie:~$ telnet localhost 1234

Trying 127.0.0.1...

Connected to localhost.localdomain.

Escape character is ’^]’.

request.push /path/to/some/file.ogg

5

END

metadata 5

[...]

END

request.push http://remote/audio.ogg

6

END

trace 6

[...]

END

help

[...]

14 CHAPTER 1. LIQUIDSOAP

END

exit

Of course, telnet isn’t user friendly. But it is easy to write scripts to interact with liquidsoap
in that way. Examples of such tools are liguidsoap and bottle.

1.3.3 That source is fallible??!

If you start trying your own examples, you will probably quickly run into that error. In liquidsoap,
we say that a source is infallible if it will be always available: it will always be able to fill some
audio frames. Otherwise, it is fallible. Liquidsoap checks that the child of an output is infallible,
so that you can trust your output. Basically, it helps you to remember to always put some trusted
file somewhere in the program.

For example request.queue() is not available when there is no user request, so it is fallible. A
playlist might become temporarily unavailable if it encounters an undecodable file, or if it needs
to download files on an unreliable network. But playlist.safe("my.pls") is always available
if my.pls is a valid file containing a playlist of valid local files – because all files are checked in
advance.

The typical way to turn a fallible source src into an infallible one is to pick a default valid local
file failure.ogg and use fallback([src,single("failure.ogg")]). It will never fail, because
if your initial source fails, the default local file will always be there to fill the stream.

Use liquidsoap --check my.liq for checking a file without running it, including fallibility
checks.

1.3.4 Daemon mode

The full installation of liquidsoap will typically install /etc/liquidsoap,
/etc/init.d/liquidsoap and /var/log/liquidsoap. All these are meant for a particu-
lar usage of liquidsoap when running a serious radio.

Your .liq files should go in /etc/liquidsoap. You’ll then start/stop the radio using the init
script: /etc/init.d/liquidsoap start. Your scripts don’t need to have the #! line. Liquidsoap
will automatically be ran on daemon mode (-d option) for them.

You should not override the log.dir, because a logrotate configuration is also installed so that
log files in the standard directory are truncated and compressed as they grow too big.

It is not very convenient to detect errors when using the init script. We advise users to first
check their modified scripts using liquidsoap --check /etc/liquidsoap/script.liq before
effectively restarting the daemon.

1.3.5 What’s next?

You should now learn more about liquidsoap’s scripting language. Once you’ll know the syntax
and types, you’ll probably need to refer to the scripting reference and the settings reference, or
see examples. For a better understanding of liquidsoap, it is also suggested to read more about
the concepts of the system.

1.4 Concepts

1.4.1 Sources

Using liquidsoap is about writing a script describing how to build what you want. It is about
building a stream using elementary streams and stream combinators, etc. Actually, it’s a bit more
than streams, we call them sources – in liquidsoap’s code there is a Types.source type, and in
*.liq scripts one of the elementary datatypes is source.

1.4. CONCEPTS 15

A source is a stream with metadata and track annotations. It is discretized as a stream of
fixed-length buffers of raw audio, the frames. Every frame may have metadata inserted at any
point, independantly of track boundaries. At every instant, a source can be asked to fill a frame
of data. Track boundaries are denoted by a single denial of completely filling a frame. More than
one denial is taken as a failure, and liquidsoap chooses to crash in that case.

To build sources in liquidsoap scripts, you need to call functions which return type is source.
For convenience, we categorize these functions into three classes. The sources (sorry for redun-
dancy, poor historical reasons) are functions which don’t need a source argument – we might call
them elementary sources. The operators need at least one source argument – they’re more about
stream combination or manipulation. Finally, some of these are called outputs, because they are
active operators (or active sources in a few cases): at every instant they will fill their buffer and
do something with it. Other sources just wait to be asked (indirectly or not) by an output to fill
some frame.

All sources, operators and outputs are listed in the scripting API reference.

How does it work?

To clarify the picture let’s study in more details an example.

radio = output.icecast(

mount="test.ogg",

random([jingle , fallback([playlist1 , playlist2 , playlist3])])

)

At every tick, the output asks the ”random” node for data, until it gets a full frame of raw
audio. Then it encodes it, and sends it to the Icecast server. Suppose ”random” has chosen the
”fallback” node, and that only ”playlist2” is available, and thus played. At every tick, the buffer is
passed from ”random” to ”fallback” and then to ”playlist2”, which fills it, returns it to ”fallback”,
which returns it to ”random”, which returns it to the output. Every step is local.

At some point, ”playlist2” ends a track. The ”fallback” detects that on the returned buffer,
and selects a new child for the next filling, depending on who’s available. But it doesn’t change
the buffer, and returns it to ”random”, which also selects a new child, randomly, and return the
buffer to the output. On next filling, the route of the frame can be different.

It is possible to have the route changed inside a track, for example using the track sensitive
option of fallback, which is typically done for instant switches to live shows when they start.

Fallibility

Outputs expect their input source to never fail, so that the stream never ends. Liquidsoap has a
mechanism to verify this, and helps you think of all possible failures, and prevent them. Elementary
sources are either fallible or infallible, and this liveness type is propagated through operators to
finally compute the type of any source. A fallback or random source is infallible if and only if
at least one of their children is infallible. A switch is infallible if and only if it has one infallible
child guarded by the trivial predicate true . And so on.

On startup, outputs will check the liveness type of their input sources, and you’ll get an error if
one of these is fallible. The common answer to such errors is op add one fallback to play a default
file or a checked playlist (playlist.safe) if the normal source fails. Often, the error is excessive,
it simply means that your (unchecked) playlists could all be corrupted, which is unlikely. But
sometimes, it also helps one to avoid the case where a playlist fails because it spent too much time
trying to download remote files.

Caching mode

In some situations, a source must take care about the consistency of its output. If it is asked
twice to fill buffers during the same time tick, it should fill them with the same data. Suppose

16 CHAPTER 1. LIQUIDSOAP

for example that a playlist is listened by two outputs, and that it gives the first frame to the first
output, the second frame to the second output: it would give the third frame to the first output
during the second tick, and the output will have missed one frame.

Keeping that in mind is required to understand the behaviour of some complex scripts. The
high-level picture is enough for users, more details follow for developers and curious readers.

The sources detect if they need to remember (cache) their previous output in order to replay
it. To do that, clients of the source must register in advance. If two clients have registered, then
the caching should be enabled. Actually that’s a bit more complicated, because of transitions.
Obviously the sources which use a transition involving some other source must register to it,
because they may eventually use it. But a jingle used in two transitions by the same switching
operator doesn’t need caching. The solution involves two kinds of registering: dynamic and static
activations. Activations are associated with a path in the graph of sources’ nesting. The dynamic
activation is a pre-registration allowing a real static activation to come later, possibly in the
middle of a time tick, from a super-path – i.e. a path of which the first one is a prefix. Two static
activations trigger caching. The other reason for enabling caching is when there is one static
activation and one dynamic activation which doesn’t come from a prefix of the static activation’s
path. It means that the dynamic activation can yield at any moment to a static activation and
that the source will be used by two sources at the same time.

1.4.2 Execution model

In your script you define a bunch of sources interacting together. The output sources hook their
output function to the root thread manager. Then the streaming starts. At every tick the root
thread calls the output hooks, and the outputs do their jobs. This task is the most important
and shouldn’t be disturbed. Thus, other tasks are done in auxiliary threads: file download, audio
validity checking, http polling, playlist reloading. . . No blocking or expensive call should be done
in the root thread. Remote files are completely downloaded to a local temporary file before use
by the root thread. It also means that you shouldn’t access NFS or any kind of falsely local files.

1.4.3 An abstract notion of files: requests

The request is an abstract notion of file which can be conveniently used for defining powerful
sources. A request can denote a local file, a remote file, or even a dynamically generated file. They
are resolved to a local file thanks to a set of protocols. Then, audio requests are transparently
decoded thanks to a set of audio and metadata formats.

The systematic use of requests to access files allows you to use remote URIs instead of local
paths everywhere. It is perfectly OK to create a playlist for a remote list containing remote URIs:
playlist("http://my/friends/playlist.pls").

The resolution process

The nice thing about resolution is that it is recursive and supports backtracking. An URI can be
changed into a list of new ones, which are in turn resolved. The process succeeds if some valid
local file appears at some point. If it doesn’t succeed on one branch then it goes back to another
branch. A typical complex resolution would be:

• bubble:artist = "bodom"

– ftp://no/where

∗ Error

– ftp://some/valid.ogg

∗ /tmp/success.ogg

ftp://no/where
ftp://some/valid.ogg

1.5. LIQUIDSOAP’S SCRIPTING LANGUAGE 17

On top of that, metadata is extracted at every step in the branch. Usually, only the final local
file yields interesting metadata (artist,album,. . .). But metadata can also be the nickname of the
user who requested the song, set using the annotate protocol.

At the end of the resolution process, if the request is an audio one, liquidsoap check that the
file is decodable: there should be a valid decoder for it (this isn’t based on the extension but on
the success of a format decoder), the decoder shouldn’t yield an empty stream, and opening the
decoder should be fast (less than 0.5 seconds), so that the opening of the audio file for its real
playing in the main thread doesn’t freeze it for too long.

Currently supported protocols

• SMB, FTP and HTTP using ufetch (provided by our ocaml-fetch distribution)

• HTTP, HTTPS, FTP thanks to wget

• SAY for speech synthesis (requires festival): say:I am a robot resolves to the WAV file
resulting from the synthesis.

• TIME for speech synthesis of the current time: time: It is exactly @, and you’re
still listening to Geek Radio.

• ANNOTATE for manually setting metadata, typically used
in annotate:nick="vodka-goo",media=irc,message="special for
sam":ftp://bla/bla/bla. The extra metadata can then be synthetized in the audio
stream, or merged into the standard metadata fields, or used on a rich web interface. . .

It is also possible to add a new protocol from the script, as it is done with bubble for getting
songs from a database query.

Currently supported formats

• MP3

• Ogg/Vorbis

• WAV

1.5 Liquidsoap’s scripting language

Liquidsoap’s scripting language is a simple functional language, with labels and optional parame-
ters. It is statically typed, but infers types – you don’t have to write any types. To fit its particular
purpose, it has first-class sources and requests (see liquidsoap’s concepts) and a syntax extension
for simply specifying time intervals.

A liquidsoap script starts with a settings section. Then comes a sequence of expressions, where
you mostly define sources and active sources, which will animate your stream.

1.5.1 Constants

Constants are used in the settings preamble and in the body of a script. Their syntax is quite
common:

• integers, such as 42;

• floats, such as 3.14;

• booleans, true and false;

• strings, such as ”foo” or ’bar’.

18 CHAPTER 1. LIQUIDSOAP

Beware: 3.0 is not an integer and 5 is not a float, the dot matters.
Strings might be surrounded by double or single quotes. In both cases, you can escape the

quote you’re using: "He said: \"Hello, you\"." is valid but ’He said: "Hello, you".’ is
equivalent and nicer.

1.5.2 Settings

That part of the script allows you to control the global behaviour of liquidsoap: log file, log levels,
daemon mode. . . by defining some of the available settings.

The settings preamble is very simple: a sequence of set VAR = CONST. CONST must be a
constant of type bool, int or string as described earlier, or a list of strings noted as ["foo",
’bar’]. More complex expressions are not allowed here.

The type of a setting is very important: the int setting ”bla” and the bool setting ”bla” are
distinct and can coexist; so if you put the wrong type for a configuration variable, it will simply
be ignored by liquidsoap which will lookup only for the expected type.

1.5.3 Expressions

You can form expressions by using:

• Constants and variable identifiers. Identifier are made of alphanumerics, underscore and dot:
[a-zA-Z0-9 \.]*

• Lists and tuples: [expr,expr,...] and (expr,expr,..)

• Sequencing: expressions may be sequenced, just juxtapose them. Usually one puts one
expression per line. Optionally, they can be separated by a semicolon. The type of a
sequence of expressions is the type of the last expression – just as a sequence evaluates to
its last expression.

• Application f(x,y) of arguments to a function. Application of labeled parameters is as
follows: f(x,foo=1,y,bar="baz"). The relative order of two parameters doesn’t matter as
long as they have different labels.

• Definitions using def-end: def source(x) = s = wrap1(x) ; wrap2(s) end or def pi =
3.14 end. The = is optional, you may prefer multi-line definitions without it. The definition
of a function with two named parameters, the second one being optional with default value
13 is as follows: def f(∼foo,∼bar=13) = body end.

• Shorter definitions using the equality: pi = 3.14. This is never an assignment, only a new
local definition!

• Anonymous functions: fun (arglist) -> expr. Don’t forget to use parenthesis if you need
more than one expr: fun (x) -> f1(x) ; f2(x) will be read as (fun (x) -> f1(x)) ;
f2(x) not as fun (x) -> (f1(x) ; f2(x)).

• Code blocks: expr is a shortcut for fun () -> expr.

No assignation, only definitions. x = expr doesn’t modify x, it just defines a new x. The
expression (x = s1 ; def y = x = s2 ; (x,s3) end ; (y,x)) evaluates to ((s2,s3),s1).

Function. The return value of a function is its body where parameters have been substituted.
Accordingly, the type of the body is the return type of the function. If the body is a sequence,
the return value will thus be its last expression, and the return type its type.

return type of foo will be string.

def foo ()

a = bar()

1.5. LIQUIDSOAP’S SCRIPTING LANGUAGE 19

b = 1

"string"

end

Type of an application. The type of an application is the return type of function if all
mandatory arguments are applied:

def foo ()

1

end

a will be an integer

a = foo()

Otherwise, the application is ”partial”, and the expression has the type of a function (see below
for more about partial applications).

Partial application. Application of arguments can be partial. For example if f takes two
integer arguments, f(3) is the function waiting for the second argument. This can be useful to
instantiate once for all dummy parameters of a function:

out = output.icecast(host="streamer",port="8080",password="sesame")

Labels. Labeled and unlabeled parameters can be given at any place in an application.
The order of the arguments is up to permutation of arguments of distinct labels. For example
f(x,foo=1) is the same as f(foo=1,x), both are valid for any function f(x,∼foo,...). It makes
things easier for the user, and gives its full power to the partial application.

Optional arguments. Functions can be defined with an optional value for some parameter (as
in def f(x="bla",∼foo=1) = ... end), in which case it is not required to apply any argument
on the label foo. The evaluation of the function is triggered after the first application which
instantiated all mandatory parameters.

1.5.4 Types

We believe in static typing especially for a script which is intended to run during weeks: we
don’t want to notice a mistake only when the special code for your rare live events is triggered!
Moreover, we find it important to show that even for a simple script language like that, it is worth
implementing type inference. It’s not that hard, and makes life easier.

The basic types are int, float, bool, string, but also source and request. Corresponding
to pairs and lists, you get (T*T) and [T] types – all elements of a list should have the same type.
For example, [(1,"un"),(2,"deux)] has type [(int*string)].

A function type is noted as (arg types) -> return type. Labeled arguments are denoted
as ∼label:T or ?label:T for optional arguments. For example the following function has type
(source,source,?jingle:string) -> source.

fun (from,to,~jingle=default) ->

add ([sequence([single(jingle), fallback([])]), fade.initial(to)])

1.5.5 Time intervals

The scripting language also has a syntax extension for simply specifying time intervals.
A date can be specified as ?w?h?m?s where ? are integers and all components ?x are optional.

It has the following meaning:

• w stands for weekday, ranging from 0 to 7, where 1 is monday, and sunday is both 0 and 7.

20 CHAPTER 1. LIQUIDSOAP

• h stands for hours, ranging from 0 to 23.

• m stands for minutes, from 0 to 59.

• s stands for seconds, from 0 to 59.

It is possible to use 24 (resp. 60) as the upper bound for hours (resp. seconds or minutes) in
an interval, for example in 12h-24h.

It is possible to forget the m for minutes if hours are specified – and seconds unspecified,
obviously.

Time intervals can be either of the form DATE-DATE or simply DATE. Their meaning should be
intuitive: 10h-10h30 is valid everyday between 10:00 and 10:30; 0m is valid during the first minute
of every hour.

This is typically used for specifying switch predicates:

switch([

({ 20h-22h30 }, prime_time),

({ 1w }, monday_source),

({ (6w or 7w) and 0h-12h }, week_ends_mornings),

({ true }, default_source)

])

1.6 Liquidsoap settings

Liquidsoap scripts start with a settings section, for defining a few global variables affecting the
behaviour of the application. The settings are typed, and can be string, int, bool or string
list.

Below is a presentation of available settings. Every section starts with a list of settings, together
with their types. Then comes the description of the group of settings.

1.6.1 Logging

string log.dir

string log.file

bool log.stdout

int log.level

int log.level.[label]

When executing [script].liq, liquidsoap logs some information in
[log.dir]/[script].log. The default value for [log.dir] is set during configuration,
typically /var/log/liquidsoap. It can also be set using the string setting log.dir. You can
also override the filename, using the log.file setting.

It is often useful while debugging to directly see on the log on the standard output. The
log.stdout can be set to true to achieve that.

Finally you can tweak the amount of information by changing the log levels. The higher it is,
the less info you get. Log level 1 is for errors, 2 for warnings, 3 for information, 4 for annoying
information, etc. log.level is the default level, you can also filter your logs more specifically
using the label-specific log.level.[label] settings.

1.6.2 Daemon

bool daemon

string daemon.piddir

string daemon.piddfile

1.7. COOKBOOK 21

Liquidsoap can detach and run as a daemon, if the daemon flag is set. In that case it will put the
PID of the daemon process in [daemon.piddir]/[script].pid. The default piddir is typically
/var/run/liquidsoap. As for the log file, the PID file can be overriden using the daemon.pidfile
setting.

1.6.3 Server

bool server

int server.port

bool server.public

You can interact with an instance of liquidsoap thanks to a simple telnet interface, where
you can get info and control your sources. By default, that service is ran on port 1234 and is
only available from the local host, since it currently doesn’t support any kind of access control
or authentification. You can disable it, change the port and the availability to the full network
thanks to these settings. For GeekRadio, the service is public in order to be available for an IRC
bot running on another server, but it is then restricted to the local network by the firewall.

1.6.4 Misc

string list tag.encodings

int max_rid

float decoding.buffer.length

float max_latency

If your liquidsoap has charset reencoding support (using Camomile), then tag.encodings is
used to guess the encoding of strings. The default is ["UTF-8","ISO-8859-1"].

The next settings are really low-level, and one should rarely need to change them.
The max rid allows you to tune the maximum request ID. Making it a bit larger allows to

access requests a while after that they are destroyed, to read the request trace or metadata. On
the other hand, having too many requests can be messy and a bit heavy.

For some features (typically fade.out() and cross()) Liquidsoap needs to know precisely
the remaining time in a track. It only roughly evaluates it at the beginning of a file, but it
has to be precise at the end. This is done by decoding data in advance in a buffer of duration
decoding.buffer.length seconds (defaults to 10). In a nutshell, if you use cross-fadings or
fade-outs with a maximum duration of D, you should set the buffer’s length to D too for perfect
precision. However, it has a little cost on opening of a file while the buffer is filled, so be careful
if you’re short of computing power.

Sometimes, liquidsoap may get a bit late, in which case it’ll run faster for a while to fill the
gap. But when the latency is higher than max latency seconds (defaults to 60), it’ll restart all
the outputs in order to cancel the latency. It shouldn’t happen much, but it’s there just in case.

1.7 Cookbook

The recipes show how to build a source with a particular feature. To try it, turn that into a script
which plays the source directly to your speaker:

#!/usr/bin/liquidsoap -v

set log.dir = "/tmp"

set log.stdout = true

recipe = # <fill this>

output.ao(recipe)

22 CHAPTER 1. LIQUIDSOAP

Output via libAO is the most stable and portable operator.

You can also output to speakers via ALSA, or to a file, icecast, etc.

1.7.1 Files

A source which infinitely repeats the same URI:

single("/my/default.ogg")

A source which plays a playlist of requests – a playlist is a file with an URI per line.

Shuffle, play every URI, start over.

playlist("/my/playlist.txt")

Do not randomize

playlist(mode="normal", "/my/pl.m3u")

The playlist can come from any URI, can be reloaded every 10 minutes.

playlist(reload=600,"http://my/playlist.txt")

When building your stream, you’ll need to make it unfallible. Usually, you achieve that using
a fallback switch (see below) with a branch made of a safe single or playlist.safe. Roughly, a
single is safe when it is given a valid local audio file. A playlist.safe behaves just like a playlist
but will check that all files in the playlist are valid local audio files. This is quite an heavy check,
you don’t want to have large safe playlists.

1.7.2 Scheduling

A fallback switch

fallback([playlist("http://my/playlist"), single("/my/jingle.ogg")])

A scheduler, assuming you have defined the night and day sources

switch([({0h-7h}, night), ({7h-24h}, day)])

1.7.3 Fancy effects

Add a jingle to your normal source at the beginning of every hour:

add([normal,switch([({0m0s},jingle)])])

Switch to a live show as soon as one is available. Make the show unavailable when it is silent,
and skip tracks from the normal source if they contain too much silence.

fallback(track_sensitive=false,

[strip_blank(input.http("http://myicecast:8080/live.ogg")),

skip_blank(normal)])

Without the track sensitive=false the fallback would wait the end of a track to switch to
the live. When using the blank detection operators, make sure to fine-tune their threshold and
length (float) parameters.

1.7.4 Unix interface, dynamic requests

request.dynamic is a source which takes a custom function for creating its new requests. This
function can be used to call an external program. The source expects a ()->request func-
tion. To create the request, the function will have to use the request function which has type
(string,?indicators:[string]). The first string is the initial URI of the request, which is

1.7. COOKBOOK 23

resolved to get an audio file. The second argument can be used to directly specify the first row
of URIs (see the concepts page), in which case the initial URI is just here for naming, and the
resolving process will try your list of indicators one by one until a valid audio file is obtained.

The simplest example takes the output of an external script as an URI to create a new request:

request.dynamic({ request(get_process_output("my_script my_params")) })

More complex, the following snippet defines a source which repeatedly plays the first valid URI
in the playlist:

request.dynamic({ request("bar:foo",

indicators=get_process_lines("cat "^quote("playlist.pls"))) })

Of course a more interesting behaviour is obtained with a more interesting program than ”cat”.
Another way of using an external program is to define a new protocol which uses it to resolve

URIs. add protocol takes a protocol name, a function to be used for resolving URIs using that
protocol. The function will be given the URI parameter part and the time left for resolving –
though nothing really bad happens if you don’t respect it. It usually passes the parameter to an
external program, that’s how we use bubble for example:

add_protocol("bubble",

fun (arg,delay) -> get_process_lines("/usr/bin/bubble-query "^quote(arg)))

When resolving the URI bubble:artist="seeed", liquidsoap will call the function, which will
call bubble-query ’artist="seed"’ which will output 10 lines, one URI per line.

1.7.5 Transitions

There are two kinds of transitions. Transitions between two different children of a switch are not
problematic. Transitions between different tracks of the same source are more tricky, since they
involve a fast forward computation of the end of a track before feeding it to the transition function:
such a thing is only possible when only one operator is using the source, otherwise it’ll get out of
sync.

Switch-based transitions

The switch-based operators (switch, fallback and random) support transitions. For every child,
you can specify a transition function computing the output stream when moving from one child
to another. This function is given two source parameters: the child which is about to be left,
and the new selected child. The default transition is fun (a,b) -> b, it simply relays the new
selected child source. Other possible transition functions:

A simple (long) cross-fade

def crossfade(a,b)

add(normalize=false,

[sequence([blank(duration=5.),

fade.initial(duration=10.,b)]),

fade.final(duration=10.,a)])

end

Partially apply next to give it a jingle source.

It will fade out the old source, then play the jingle.

At the same time it fades in the new source.

def next(j,a,b)

add(normalize=false,

24 CHAPTER 1. LIQUIDSOAP

[sequence(merge=true,

[blank(duration=3.),

fade.initial(duration=6.,b)]),

sequence([fade.final(duration=9.,a),

j,fallback([])])])

end

A similar transition, which does a cross-fading from A to B

and adds a jingle

def transition(j,a,b)

add(normalize=false,

[fade.initial(b),

sequence(merge=true,

[blank(duration=1.),j,fallback([])])]),

fade.final(a)])

end

Finally, we build a source which plays a playlist, and switches to the live show as soon as it
starts, using the transition function as a transition. At the end of the live, the playlist comes
back with a cross-fading.

fallback(track_sensitive=false,

transitions=[crossfade, transition(jingle)],

[input.http("http://localhost:8000/live.ogg"),

playlist("playlist.pls")])

Cross-based transitions

The cross() operator allows arbitrary transitions between tracks of a same source. Here is how
to use it in order to get a cross-fade:

def crossfade(~start_next,~fade_in,~fade_out,s)

s = fade.in(duration=fade_in,s)

s = fade.out(duration=fade_out,s)

fader = fun (a,b) -> add(normalize=false,[b,a])

cross(fader,s)

end

my_source=crossfade(start_next=1.,fade_out=1.,fade_in=1.,my_source)

The fade-in and fade-out parameters indicate the duraction of the fading effects. The start-
next parameters tells how much overlap there will be between the two tracks. If you want a long
cross-fading with a smaller overlap, you should use a sequence to stick some blank section before
the beginning of b in fader.

The three parameters given here are only default values, and will be overriden by values coming
from the metadata tags liq fade in, liq fade out and liq start next.

Chapter 2

Advanced topics

2.1 Using the telnet interface

Tobias Luther was kind enough to write this tutorial about the use of liquidsoap’s telnet interface.
In this example there are two queues for requests, one with the id request, one with the id
scheduler. There are also two switched playlists, one for daytime, one for nighttime and a
playlist for jingles. Here’s a list of commands with examples of their use in this case.

Abbreviations:

• <rid> = request id

• <uri> = uniform resource identifier, /path/to/file.ogg is an example uri.

2.1.1 How to connect to the telnet server

The command telnet localhost 1234 opens a telnet session on the local host at port 1234, the
port liquidsoap is running on by default. You can also do telnet server 1234 if liquidsoap is
running on remote host server, and it’s server is public – see settings for details.

Note: It is also possible to connect to liquidsoap remotely, even when it’s not public: just
tunnel the port via a ssh connection. Create the tunnel by running ssh user@server -L
1234:localhost:1234. Once the ssh connection has been established you can open another
terminal and start the telnet using telnet localhost 1234 as if you were on the server.

2.1.2 Scripting for the telnet server

Although it’s possible to interact with liquidsoap manually via telnet, one will usually want to
automate that interaction via scripts. For example, Perl and Ruby have simple telnet mod-
ules which allow it, as demonstrated in liquidsoap/scripts (http://savonet.svn.sourceforge.
net/viewvc/savonet/trunk/liquidsoap/scripts/): scripts/ask-liquidsoap.rb uptime,
scripts/ask-liquidsoap.pl "request.push path/to/your/music file.ogg".

2.1.3 General commands

help

This lists the available commands.

help

Available commands:

| alive

| day.m3u.next

| exit

25

http://savonet.svn.sourceforge.net/viewvc/savonet/trunk/liquidsoap/scripts/
http://savonet.svn.sourceforge.net/viewvc/savonet/trunk/liquidsoap/scripts/

26 CHAPTER 2. ADVANCED TOPICS

| help

| jingles.pls.next

| list

| metadata <rid>

| night.m3u.next

| on_air

| quit

| yourradio.ogg.metadatas

| yourradio.ogg.remaining

| yourradio.ogg.skip

| yourradio.ogg.start

| yourradio.ogg.status

| yourradio.ogg.stop

| request.consider <rid>

| request.ignore <rid>

| request.push <uri>

| request.queue

| resolving

| scheduler.consider <rid>

| scheduler.ignore <rid>

| scheduler.push <uri>

| scheduler.queue

| trace <rid>

| uptime

END

uptime

Displays liquidsoap’s uptime.

uptime

0j 00h 27m 31s

END

alive

Show all alive requests (pending, resolving, or playing), that are in our example used by playlists
and queues. This is displayed as a list of RIDs.

alive

7 6 5 4 3 2 1

END

resolving

Show all resolving requests, those which are being downloaded, synthesized, or whatever the
protocol handler is doing to resolve them. The format is the same as alive.

metadata <rid>

Displays metadata for a request.

metadata 8

title="le silence"

temporary="false"

license="Licensed under http://creativecommons.org/licenses/by-nc-nd/2.0/fr/"

2.1. USING THE TELNET INTERFACE 27

date="2004-10-01"

artist="...anabase*"

description="http://www.jamendo.com/ : Free music"

rid="8"

source_id="521"

tracknumber="4"

initial_uri="/path/to/your/files/04 - le silence.ogg"

source="request"

organization="http://www.jamendo.com/ : Free music"

status="ready"

filename="/path/to/your/files/04 - le silence.ogg"

2nd_queue_pos="0"

album="expdition vers l’intrieur"

comment="http://www.jamendo.com/ : Free music"

www="http://www.jamendo.com/?&184"

END

trace <rid>

Trace the history of a request’s resolving. See concepts for details on resolving.

trace 10

[2006/11/12 16:46:20] Pushed ["/path/to/silence.ogg";...].

[2006/11/12 16:46:20] "/path/to/silence.ogg" entered the secondary queue : position #1

[2006/11/12 16:46:20] Entering the primary queue.

[2006/11/12 16:52:11] Currently on air.

END

on air

Displays the requests that are currently being played. Most of the time there is only one, but in
general there could be several, for example if you mix two playlists together.

on_air

8

END

exit

Exits the telnet connection.

exit

Connection closed by foreign host

quit

Just like exit.

2.1.4 Playlist commands

<playlist>.next

Displays the upcoming tracks for a playlist, for example day.m3u.

28 CHAPTER 2. ADVANCED TOPICS

day.m3u.next

/path/to/your/files/04 - Le trottoir.ogg

/path/to/your/files/csr002-01-twizzle-falling.mp3

/path/to/your/files/GilbertoGil_Oslodum.ogg

/path/to/your/files/01 - Mme Asperge.mp3

/path/to/your/files/hb02_kosmo_knoedeltroete(rmx).mp3

/path/to/your/files/01_Colida_Carni-War.mp3

/path/to/your/files/01 - les trains.ogg

/path/to/your/files/04_DHS0015.mp3

END

2.1.5 Output commands

<output>.metadatas

Displays metadata of already or currently-being played tracks, a metadata history.

yourradio.ogg.metadatas

--- 10 ---

title="Passing"

temporary="false"

date="2006"

composer=

artist="Pablo Cepeda"

rid="5"

on_air="2006/11/12 16:36:11"

tracknumber="01"

initial_uri="/path/to/your/files/kpu088-pablo-cepeda-01-passing.mp3"

orig. artist=

source="day.m3u"

status="playing"

filename="/path/to/your/files/kpu088-pablo-cepeda-01-passing.mp3"

genre="(52)Electronic"

album="Le cicle du calme"

comment="http://www.kikapu.com"

--- 9 ---

etc="etc..."

END

<output>.remaining

Displays the remaining time in the current track, in seconds. This information is currently not
very precise, and often simply unavailable, in which case the output is (undef).

yourradio.ogg.remaining

7 sec

END

<output>.skip

Skips the currently playing track.

2.1. USING THE TELNET INTERFACE 29

yourradio.ogg.skip

Done

END

<output>.start

Start streaming if paused.

yourradio.ogg.start

END

<output>.stop

Pauses streaming, keeps liquidsoap running. The current track is continued when the stream is
restarted, unless it’s been consumed by another output in the meantime.

yourradio.ogg.stop

END

<output>.status Displays the output’s status. Obviously, if the stream is running it is ”on”, if
it is paused it is ”off”.

yourradio.ogg.status

on

END

2.1.6 Queue commands

Queue sources (request.queue and request.equeue) have two queues. In the secondary one,
requests are stored, waiting to be resolved. When needed, requests are taken out of the secondary
queue, resolved, and then put into the primary one. Finally, one request is removed from the
primary queue and played.

<queue>.ignore <rid>

Tells the queue to drop request rid when it is popped out of the secondary queue.

request.ignore 8

OK

END

<queue>.consider <rid>

Cancels a ignore, if it’s not too late, i.e. if the request hasn’t been popped and droped already.
Same format as ignore.

<queue>.push <uri>

Pushes a request to the request queue.

request.push /path/to/your/files/04 - le silence.ogg

8

END

30 CHAPTER 2. ADVANCED TOPICS

<queue>.queue

Displays the list of <rid> of the requests from both queues, and currently playing.

request.queue

8

END

2.2 Blank detection

Liquidsoap has three operators for dealing with blanks.
On GeekRadio, we play many files, some of which include bonus tracks, which means that they

end with a very long blank and then a little extra music. It’s annoying to get that broadcasted.
The skip blank operator skips the current track when a too long blank is detected, which avoids
that. The typical usage is simple:

Wrap it with a blank skipper

source = skip_blank(source)

At RadioPi they have another problem: sometimes they have technical problems, and while
they think they are doing a live show, they’re making noise only in the studio, while only blank
is broadcasted; sometimes, the staff has so much fun (or is it something else ?) doing live shows
that they live at the end of the show without thinking to turn off the live, and the listeners get
some silence again. To avoid that problem we made the strip blank operators which hides the
stream when it’s too blank (i.e. declare it as unavailable), which perfectly suits the typical setup
used for live shows:

set log.dir = "/tmp"

set log.stdout = true

interlude = one_file("sorryfortheblank.ogg")

After 5 sec of blank the microphone stream is ignored,

which causes the stream to fallback to interlude.

As soon as noise comes back to the microphone the stream comes

back to the live -- thanks to track_sensitive=false.

stream = fallback(track_sensitive=false,

[strip_blank(length=5.,mic()) , interlude])

Put that stream to a local file

output.ogg("/tmp/hop.ogg",stream)

If you don’t get the difference between these two operators, maybe you need to learn more
about the basic concepts of Liquidsoap, especially the notion of source.

Finally, if you need to do some custom action when there’s too much blank, we have on blank:

def handler()

system("/path/to/your/script to do whathever you want")

end

source = on_blank(handler,source)

2.3 Distributed encoding

Using RTP, liquidsoap can directly output the raw stream with metadata. Then you can set up
another liquidsoap instance on an other machine of your network which just inputs this RTP

2.3. DISTRIBUTED ENCODING 31

stream and encodes it, for example for sending to Icecast. It allows you to share the load on many
machines, and also make the main liquidsoap process more independant of the Icecast servers.
These can now crash or be restarted, you’ll just have to restart the RTP encoders.

Here is how to setup a RTP server:

set log.dir = "/tmp"

set log.stdout = true

set server.port = 1235

output.rtp(single("/usr/share/mrpingouin/mp3bis/bodom/TheNail.ogg"))

And here is the client, takes the RTP stream and plays it on your speakers:

set log.dir = "/tmp"

set log.stdout = true

output.alsa(input.rtp())

The server port has been specified on the server to be different from the default 1234 used on the
client, so that thet don’t conflict if ran on the same host. If you want to run the client on another
host, specify a sufficient TTL for the RTP output, default being 0: output.rtp(ttl=1,...).

32 CHAPTER 2. ADVANCED TOPICS

Chapter 3

Other tools

3.1 Bubble

Bubble is a simple program which scans your audio files and stores their metadata in a SQLite
database. It can rewrite paths into URI so that you can index remote files mounted locally and
rewrite the local path into the general URI before storing it in the database. For example if you
mount your samba workground in /mnt/samba/workgroup using fusesmb, you’ll ask bubble to
rewrite ”/mnt/samba/workgroup” into ”smb://”.

Bubble has been designed to be interfaced with liquidsoap to provide a protocol for selecting
files by queries on metadata. URI rewriting makes it possible to query from another machine than
the one where the indexer runs, and also makes sure that the file will appear as a remote one to
liquidsoap, so that it will be fully downloaded it before being played.

To add the bubble protocol to liquidsoap, we use the following code:

bubble = "/home/dbaelde/savonet/bubble/src/bubble-query " ^

"-d /var/local/cache/bubble/bubble.sql "

add_protocol("bubble",

fun (arg,delay) -> get_process_lines(bubble^quote(arg)))

It allows us to have an IRC bot which accepts queries like play "Alabama song" and trans-
forms it into the URI bubble:title="Alabama song" before queueing it in a liquidsoap instance.
The bubble protocol in liquidsoap will call the bubble-query script which will transform the
query into a SQLite query and return a list of ten random matches, which liquidsoap will try.

Although it has been used for months as distributed on the SVN, bubble is also a proof-of-
concept tool. It is very concise and can be tailored to custom needs.

3.2 Bottle

Bottle is a prototype IRC bot written in OCaml. It uses a modular plugin system and is in
particular able to communicate with liquidsoap. Currently, it is able to:

• show information about the song currently playing,

• listen to users’ song requests,

• skip songs.

It is an example of how to write software which interacts with liquidsoap. You can get its
source code via SVN: http://svn.sourceforge.net/savonet/trunk/bottle/.

This kind of tools doesn’t need to be done in OCaml. It is quite easy to write an interface
module for liquidsoap in perl, python or ruby too. We have a perl module in an unpublished bot
– available on request. A python module is available in liguidsoap.

33

http://svn.sourceforge.net/savonet/trunk/bottle/

34 CHAPTER 3. OTHER TOOLS

Chapter 4

Reference

4.1 %

(string, [(string*string)]) -> string
(pattern % [. . . ,(k,v),. . .]) replaces in pattern occurences of:
- ’$(k)’ into ”v”;
- ’$(if $(k2),”a”,”b”)’ into ”a” if k2 is found in the list, ”b” otherwise.

4.2 ˆ

(string, string) -> string
Concatenate strings.

4.3 add

(?id:string, ?normalize:bool, ?weights:[int], [source]) -> source
Add sources, with normalization

• (unlabeled) ([source])

• id (string — defaults to ""): Force the value of the source ID

• normalize (bool — defaults to true)

• weights ([int] — defaults to []): Relative weight of the sources in the sum. The empty
list stands for the homogeneous distribution.

4.4 add protocol

(string, ((string, float) -> [string])) -> unit
Register a new protocol.

4.5 and

(bool, bool) -> bool
Return the conjunction of its arguments

35

36 CHAPTER 4. REFERENCE

4.6 append

(?id:string, ?merge:bool, source, (([(string*string)]) -> source)) -> source
Append an extra track to every track.Set the metadata ’liq append’ to ’false’ to inhibit ap-

pending on one track.

• (unlabeled) (([(string*string)]) -> source): Given the metadata, build the source
producing the track to append. This source is allowed to fail (produce nothing) if no relevant
track is to be appended.

• (unlabeled) (source)

• id (string — defaults to ""): Force the value of the source ID

• merge (bool — defaults to false): Merge the track with its appended track.

4.7 assoc

(string, [(string*string)]) -> string
assoc k [. . . ,(k,v),. . .] = v

4.8 blank

(?id:string, ?duration:float) -> source
This source is not very noisy :)

• duration (float — defaults to 0.): Duration of blank tracks, default means forever.

• id (string — defaults to ""): Force the value of the source ID

4.9 change volume

(?id:string, float, source) -> source
Scales the amplitude of the signal

• (unlabeled) (source)

• (unlabeled) (float): multiplicative factor

• id (string — defaults to ""): Force the value of the source ID

4.10 cross

(?id:string, ?duration:float, ?inhibit:float, ?minimum:float, ((source, source)
-> source), source) -> source

Generic cross operator, allowing the composition of the N last seconds of a track with the
beginning of the next track.

• (unlabeled) (source)

• (unlabeled) ((source, source) -> source): Composition of an end of track and the next
track.

• duration (float — defaults to 5.): Duration in seconds of the crossed end of track. This
value can be set on a per-file basis using the metadata field ’liq start next’ (float in seconds).

4.11. DELAY 37

• id (string — defaults to ""): Force the value of the source ID

• inhibit (float — defaults to -1.): Minimum delay between two transitions. It is useful in
order to avoid that a transition is triggered on top of another when an end-of-track occurs
in the first one. Negative values mean ’same as duration’.

• minimum (float — defaults to -1.): Minimum duration (in sec.) for a cross: If the track
ends without any warning (e.g. in case of skip) there may not be enough data for a decent
composition. Set to 0. to avoid having transitions after skips, or more to avoid transitions
on short tracks. With the negative default, transitions always occur.

4.11 delay

(?id:string, float, source) -> source
Prevents the child from being ready again too fast after a end of track

• (unlabeled) (source)

• (unlabeled) (float): The source won’t be ready less than this amount of seconds after any
end of track

• id (string — defaults to ""): Force the value of the source ID

4.12 fade.final

(?id:string, ?duration:float, source) -> source
Fade a stream to silence.

• (unlabeled) (source)

• duration (float — defaults to 3.)

• id (string — defaults to ""): Force the value of the source ID

4.13 fade.in

(?id:string, ?duration:float, source) -> source
Fade the beginning of tracks. Metadata ’liq fade in’ can be used to set the duration for a

specific track (float in seconds).

• (unlabeled) (source)

• duration (float — defaults to 3.)

• id (string — defaults to ""): Force the value of the source ID

4.14 fade.initial

(?id:string, ?duration:float, source) -> source
Fade the beginning of a stream.

• (unlabeled) (source)

• duration (float — defaults to 3.)

• id (string — defaults to ""): Force the value of the source ID

38 CHAPTER 4. REFERENCE

4.15 fade.out

(?id:string, ?duration:float, source) -> source
Fade the end of tracks. Metadata ’liq fade out’ can be used to set the duration for a specific

track (float in seconds).

• (unlabeled) (source)

• duration (float — defaults to 3.)

• id (string — defaults to ""): Force the value of the source ID

4.16 fallback

(?id:string, ?track sensitive:bool, ?before:float, ?transitions:[(source, source)
-> source], [source]) -> source

At the beginning of each track, select the first ready child.

• (unlabeled) ([source]): Select the first ready source in this list.

• before (float — defaults to 0.): EXPERIMENTAL: for track sensitive switches, trigger
transitions before the end of track.

• id (string — defaults to ""): Force the value of the source ID

• track sensitive (bool — defaults to true): Re-select only on end of tracks

• transitions ([(source, source) -> source] — defaults to []): Transition functions,
padded with (fun (x,y) -¿ y) functions.

4.17 filter

(?id:string, ∼freq:int, ∼q:float, ∼mode:string, source) -> source
Perform several kinds of filtering on the signal

• (unlabeled) (source)

• freq (int)

• id (string — defaults to ""): Force the value of the source ID

• mode (string): low—high—band—notch

• q (float)

4.18 get process lines

(string) -> [string]
Perform a shell call and return the list of its output lines.

4.19 get process output

(string) -> string
Perform a shell call and return its output.

4.20. INPUT.HTTP 39

4.20 input.http

(?id:string, ?autostart:bool, string) -> source
Forwards the given ogg/vorbis http stream. The relay can be paused/resumed using the

start/stop telnet commands.

• (unlabeled) (string): URL of an http ogg stream (default port is 8000).

• autostart (bool — defaults to true): Initially start relaying or not.

• id (string — defaults to ""): Force the value of the source ID

4.21 input.http.mp3

(?id:string, string, ?autostart:bool, ?samplefreq:int) -> source
Forwards the given MP3 http stream. The relay can be paused/resumed using the start/stop

telnet commands.

• (unlabeled) (string): URL of an http mp3 stream (default port is 8000).

• autostart (bool — defaults to true): Initially start relaying or not.

• id (string — defaults to ""): Force the value of the source ID

• samplefreq (int — defaults to 44100): Samplefreq of the input stream.

4.22 mix

(?id:string, [source]) -> source
Mixing table controllable via the telnet interface.

• (unlabeled) ([source])

• id (string — defaults to ""): Force the value of the source ID

4.23 on blank

(?id:string, (() -> unit), ?threshold:float, ?length:float, source) -> source
Calls a given handler when detecting a blank

• (unlabeled) (source)

• (unlabeled) (() -> unit)

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 20.): Maximum silence length allowed.

• threshold (float — defaults to 100.): Intensity threshold under which the stream is
considered to be blank.

40 CHAPTER 4. REFERENCE

4.24 on metadata

(?id:string, (([(string*string)]) -> unit), source) -> source
Call a given handler on metadata packets.

• (unlabeled) (source)

• (unlabeled) (([(string*string)]) -> unit): Function called on every metadata packet
in the stream. It should be fast because it is ran in the main thread.

• id (string — defaults to ""): Force the value of the source ID

4.25 or

(bool, bool) -> bool
Return the disjunction of its arguments

4.26 output.ao

(?id:string, ?start:bool, ?driver:string, ?options:[(string*string)], source) ->
source

Output stream to local sound card using libao.

• (unlabeled) (source)

• driver (string — defaults to ""): libao driver to use

• id (string — defaults to ""): Force the value of the source ID

• options ([(string*string)] — defaults to []): List of parameters, depends on driver

• start (bool — defaults to true): Start output on operator initialization.

4.27 output.dummy

(?id:string, source) -> source
Dummy output for debugging purposes.

• (unlabeled) (source)

• id (string — defaults to ""): Force the value of the source ID

4.28 output.icecast

(?id:string, ?start:bool, ?host:string, ?port:int, ?user:string,
?password:string, ?genre:string, ?url:string, ?description:string, ?public:bool,
?multicast ip:string, ?mount:string, ?name:string, ?bitrate:int, ?quality:float,
?freq:int, ?stereo:bool, source) -> source

Send a Vorbis stream to an icecast-compatible server.

• (unlabeled) (source)

• bitrate (int — defaults to -1)

• description (string — defaults to "OCaml Radio!")

4.29. OUTPUT.OGG 41

• freq (int — defaults to 44100)

• genre (string — defaults to "Misc")

• host (string — defaults to "localhost")

• id (string — defaults to ""): Force the value of the source ID

• mount (string — defaults to "Use [name].ogg")

• multicast ip (string — defaults to "no multicast")

• name (string — defaults to "Use [mount]")

• password (string — defaults to "hackme")

• port (int — defaults to 8000)

• public (bool — defaults to true)

• quality (float — defaults to 0.5)

• start (bool — defaults to true): Start output threads on operator initialization.

• stereo (bool — defaults to true)

• url (string — defaults to "http://savonet.sf.net")

• user (string — defaults to "source")

4.29 output.ogg

(?id:string, ?start:bool, ?quality:float, ?bitrate:int, ?freq:int, ?stereo:bool,
string, source) -> source

Output the source’s stream as an OGG file.

• (unlabeled) (source)

• (unlabeled) (string): Filename where to output the OGG stream.

• bitrate (int — defaults to -1)

• freq (int — defaults to 44100)

• id (string — defaults to ""): Force the value of the source ID

• quality (float — defaults to 0.5)

• start (bool — defaults to true): Start output threads on operator initialization.

• stereo (bool — defaults to true)

4.30 output.wav

(?id:string, ?start:bool, string, source) -> source
Output the source’s stream to a WAV file.

• (unlabeled) (source)

• (unlabeled) (string)

• id (string — defaults to ""): Force the value of the source ID

• start (bool — defaults to true)

42 CHAPTER 4. REFERENCE

4.31 pipe

(?id:string, string, source) -> source
Filter data through an external process. The process should read raw CD format on stdin and

write the same on stdout. The command should output one frame for every input frame, and flush
its output. Otherwise, liquidsoap will block.

• (unlabeled) (source)

• (unlabeled) (string)

• id (string — defaults to ""): Force the value of the source ID

4.32 playlist

(?id:string, ?length:float, ?default duration:float, ?timeout:float,
?mode:string, ?reload:int, ?reload mode:string, string) -> source

Loop on a playlist of URIs.

• (unlabeled) (string): URI where to find the playlist

• default duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

• mode (string — defaults to "randomize"): normal—random—randomize

• reload (int — defaults to 0): Amount of time (in seconds or rounds) before which the
playlist is reloaded; 0 means never.

• reload mode (string — defaults to "seconds"): rounds—seconds: unit of the ’reload’
parameter

• timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.33 playlist.safe

(?id:string, ?mode:string, ?reload:int, ?reload mode:string, string) -> source
Loop on a playlist of local files, and never fail. In order to do so, it has to check every file

at the loading, so the streamer startup may take a few seconds. To avoid this, use a standard
playlist, and put only a few local files in a default safe playlist in order to ensure the liveness of
the streamer.

• (unlabeled) (string): URI where to find the playlist

• id (string — defaults to ""): Force the value of the source ID

• mode (string — defaults to "randomize"): normal—random—randomize

• reload (int — defaults to 0): Amount of time (in seconds or rounds) before which the
playlist is reloaded; 0 means never.

• reload mode (string — defaults to "seconds"): rounds—seconds: unit of the ’reload’
parameter

4.34. PREPEND 43

4.34 prepend

(?id:string, ?merge:bool, source, (([(string*string)]) -> source)) -> source

Prepend an extra track before every track. Set the metadata ’liq prepend’ to ’false’ to inhibit
prepending on one track.

• (unlabeled) (([(string*string)]) -> source): Given the metadata, build the source
producing the track to prepend. This source is allowed to fail (produce nothing) if no
relevant track is to be appended. However, success must be immediate.

• (unlabeled) (source)

• id (string — defaults to ""): Force the value of the source ID

• merge (bool — defaults to false): Merge the track with its appended track.

4.35 quote

(string) -> string

Escape shell metacharacters.

4.36 random

(?id:string, ?track sensitive:bool, ?before:float, ?transitions:[(source, source)
-> source], ?weights:[int], ?strict:bool, [source]) -> source

At the beginning of every track, select a random ready child.

• (unlabeled) ([source])

• before (float — defaults to 0.): EXPERIMENTAL: for track sensitive switches, trigger
transitions before the end of track.

• id (string — defaults to ""): Force the value of the source ID

• strict (bool — defaults to false): Do not use random but cycle over the uniform distri-
bution.

• track sensitive (bool — defaults to true): Re-select only on end of tracks

• transitions ([(source, source) -> source] — defaults to []): Transition functions,
padded with (fun (x,y) -¿ y) functions.

• weights ([int] — defaults to []): Weights of the children in the choice.

4.37 request

(?indicators:[string], string) -> request

Create a request.

44 CHAPTER 4. REFERENCE

4.38 request.dynamic

(?id:string, (() -> request), ?length:float, ?default duration:float,
?timeout:float) -> source

Play request dynamically created by a given function.

• (unlabeled) (() -> request): A function generating requests: an initial URI (possibly
fake) together with an initial list of alternative indicators

• default duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

• timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.39 request.equeue

(?id:string, ?length:float, ?default duration:float, ?timeout:float) -> source
Receive URIs from users, and play them. Insertion and deletion possible at any position.

• default duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

• timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.40 request.queue

(?id:string, ?length:float, ?default duration:float, ?timeout:float) -> source
Receive URIs from users, and play them.

• default duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

• timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.41 rewrite metadata

(?id:string, [(string*string)], source) -> source
Rewrite metadata on the fly.

• (unlabeled) (source)

• (unlabeled) ([(string*string)]): List of (target,value) rewriting rules.

• id (string — defaults to ""): Force the value of the source ID

4.42. SEQUENCE 45

4.42 sequence

(?id:string, ?merge:bool, [source]) -> source
Play only one track of every successive source, except for the last one which is played as much

as available.

• (unlabeled) ([source])

• id (string — defaults to ""): Force the value of the source ID

• merge (bool — defaults to false)

4.43 sine

(?id:string, ?duration:float, int) -> source
Plays a boring sine. . .

• (unlabeled) (int): Frequency of the sine

• duration (float — defaults to 0.)

• id (string — defaults to ""): Force the value of the source ID

4.44 single

(?id:string, string, ?length:float, ?default duration:float, ?timeout:float) ->
source

Loop on a request. It never fails if the request is static, meaning that it can be fetched once.
Typically, http, ftp, say requests are static, and time is not.

• (unlabeled) (string): URI where to find the file

• default duration (float — defaults to 30.): When unknown, assume this duration (in
sec.) for files.

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 60.): How much audio (in sec.) should be downloaded in
advance.

• timeout (float — defaults to 20.): Timeout (in sec.) for a single download.

4.45 skip blank

(?id:string, ?threshold:float, ?length:float, source) -> source
Skip track when detecting a blank

• (unlabeled) (source)

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 20.): Maximum silence length allowed.

• threshold (float — defaults to 100.): Intensity threshold under which the stream is
considered to be blank.

46 CHAPTER 4. REFERENCE

4.46 store metadata

(?id:string, ?size:int, source) -> source
Keep track of the last N metadata packets in the stream, and make the history available via a

server command.

• (unlabeled) (source)

• id (string — defaults to ""): Force the value of the source ID

• size (int — defaults to 10): Size of the history

4.47 strip blank

(?id:string, ?threshold:float, ?length:float, source) -> source
Strip blanks

• (unlabeled) (source)

• id (string — defaults to ""): Force the value of the source ID

• length (float — defaults to 20.): Maximum silence length allowed.

• threshold (float — defaults to 100.): Intensity threshold under which the stream is
considered to be blank.

4.48 switch

(?id:string, ?track sensitive:bool, ?before:float, ?transitions:[(source, source)
-> source], ?strict:bool, ?single:[bool], [((() -> bool)*source)]) -> source

At the beginning of a track, select the first source Si such than the temporal predicate Ii is
true.

• (unlabeled) ([((() -> bool)*source)]): Sources Si with the interval Ii when they should
be played.

• before (float — defaults to 0.): EXPERIMENTAL: for track sensitive switches, trigger
transitions before the end of track.

• id (string — defaults to ""): Force the value of the source ID

• single ([bool] — defaults to []): Forbid the selection of a branch for two tracks in a
row. The empty list stands for [false,. . . ,false].

• strict (bool — defaults to false): Unset the operator’s ready flag as soon as there is no
valid interval, possibly interrupting ongoing tracks.

• track sensitive (bool — defaults to true): Re-select only on end of tracks

• transitions ([(source, source) -> source] — defaults to []): Transition functions,
padded with (fun (x,y) -¿ y) functions.

4.49 system

(string) -> unit
Shell command call.

4.50. TIME IN MOD 47

4.50 time in mod

(int, int, int) -> bool
INTERNAL: time in mod(a,b,c) checks that the unix time T satisfies a ¡= T mod c ¡ b

	 Liquidsoap
	Liquidsoap
	Features
	Non-Features
	History

	Installation
	Install from source tarballs
	Subversion repository (and other distributions)
	Debian
	Gentoo
	OSX

	Quickstart
	The internet radio toolchain
	Starting to use liquidsoap
	That source is fallible??!
	Daemon mode
	What's next?

	Concepts
	Sources
	Execution model
	An abstract notion of files: requests

	Liquidsoap's scripting language
	Constants
	Settings
	Expressions
	Types
	Time intervals

	Liquidsoap settings
	Logging
	Daemon
	Server
	Misc

	Cookbook
	Files
	Scheduling
	Fancy effects
	Unix interface, dynamic requests
	Transitions

	 Advanced topics
	Using the telnet interface
	How to connect to the telnet server
	Scripting for the telnet server
	General commands
	Playlist commands
	Output commands
	Queue commands

	Blank detection
	Distributed encoding

	 Other tools
	Bubble
	Bottle

	 Reference
	%
	ˆ
	add
	add_protocol
	and
	append
	assoc
	blank
	change_volume
	cross
	delay
	fade.final
	fade.in
	fade.initial
	fade.out
	fallback
	filter
	get_process_lines
	get_process_output
	input.http
	input.http.mp3
	mix
	on_blank
	on_metadata
	or
	output.ao
	output.dummy
	output.icecast
	output.ogg
	output.wav
	pipe
	playlist
	playlist.safe
	prepend
	quote
	random
	request
	request.dynamic
	request.equeue
	request.queue
	rewrite_metadata
	sequence
	sine
	single
	skip_blank
	store_metadata
	strip_blank
	switch
	system
	time_in_mod

