
The R-GGobi Interface

Duncan Temple Lang

May 6, 2004

Abstract

We describe some of the facilities provided by theR–ggobiinterface. We look at the functions
relative to the elements of the GGobi hierarchy of figure 1.

ggobi session

ggobi instance

dataset dataset display

plot ... plot

. . . display

plot ... plot

ggobi instance

dataset
... dataset display

plot ... plot

. . . display

plot ... plot

Figure 1: ggobi Session Hierarchy. Within a session, there can be multiple independent ggobi
instances. Each instance has one or more datasets. A Display contains one or more plots and these
plots all relates variables within the same dataset.

1 The Session

1.1 Creating aggobi instance

The functionggobi()allows one to create a ggobi instance. One can specify a file name or anR
data frame to populate the ggobi with one or more datasets, or alternatively create an empty GGobi

1

and add data later in the session.ggobi() creates a GGobi control panel window and an initial
scatterplot display if there is any data.

We can use data from a fileflea.xml

g <- ggobi(system.file("data", "flea.xml", pkg="Rggobi")))

Alternatively, we can use a data frame.

data(mtcars)
g <- ggobi(mtcars)

In addition to specifying the source of the data, one can provide other arguments to parame-
terize how GGobi is created. Specifically one can give “command line arguments” to GGobi as if
invoking it as a stand-alone program. For example, we can specify the format of the data and the
file in which it is located as

g <- ggobi(args=c("-xml", system.file("data", "flea.xml", pkg="Rggobi")))

This is equivalent to invoking GGobi on the command line as

ggobi -xml <wherever>/data/flea.xml

1.1.1 ggobi objects

When one callsggobi(), the return value is an S object of classggobi . Generally one never looks
at the contents of this object. It is an opaque data type that is used merely to identify the GGobi
instance. When there two or more GGobi instances in existence, we can use aggobi object to
identify which instance to operate on. Most functions support the.gobiargument for this purpose.

When one creates aggobi instance, it becomes the default instance and all functions that op-
erate on a GGobi instance will default to that particular one. This means that one doesn’t have to
specify the.gobiargument for most functions. Indeed, one need not assign the value returned from
a call toggobi(). And if one needs to retrieve it, the functionsgetGGobi()andgetDefaultGGobi()
will accomodate.

While one rarely needs to know what the contents of aggobi object contain, here is a short
description.

id an integer that indicates thecurrent index of this ggobi instance in the list of all existing ggobis.
Note that this is not necessarily valid for future use as removing other ggobis from the list
will change the position of this one.

ref anopaquenumeric value that contains theC -level address of the ggobi instance. This allows
us both to identify the ggobi structure in subsequent calls and also verify that it still exists
and is valid.

2

1.2 Query the session’sggobiInstances.

One can find out about the number and nature of the currently open or existing ggobi instances
within a session. The functiongetNumGGobis()returns the number of ggobi instances currently
active.

> getNumGGobis()
[1] 1

One can retrieve S objects that refer to the different internal ggobi instances using the function
getGGobi(). This takes0 or more integer values identifying the ggobi instances within the internal
list. This returns an object of classggobi for each valid index found. By default, it returns a list
containing them all. If there is only one GGobi instance, only that is returned.

> getGGobi()
$id
[1] 1

$ref
[1] 279051040

attr(,"class")
[1] "ggobi"

Users can can look at the main window of a GGobi instance to find out what variables it con-
tains. They can also get this information programmatically. The functiongetDescription.ggobi()
returns a brief description of a GGobi instance.

> getDescription.ggobi()
$Filename
[1] "../ggobi/data/flea.xml"

$"Data mode"
XML

3

$"Data dimensions"
[1] 74 7

This gives the name of the data source (a file in this case), the format in which the data was read
and the number of records and variables in the dataset.

The functiondescribe.ggobi()when called with no arguments returns a description of each
of the ggobis. The description of each instance gives information about its state, specifically its
datasets and displays, and the plots within the displays.

is a list containing

datasets a description of each dataset currently in the ggobi instance, consisting of

3

name both the name of the dataset and the file name from which it was read. The first name
allows multiple datasets within a single XML file.

dims the dimension of the dataset, both number of records and variables.

format the data/file format from which the data were read: XML, ASCII, binary, MySQL,
etc.

variables the names of the variables

auxillaryFiles the names of auxillary files that were read in the process of reading the top-
level data file. This allows the user to understand more precisely how the data came to
be the way they are and how to recreate it, distribute it, etc.

displays a list describing each of the displays in the ggobi instance. Each of these displays is an
object of classggobiDisplayDescription and contains the fields

Name the title on the window.

Type the name of the plot type (scatterplot, ash, etc.)

Plots a list containing descriptions of the display’s plots:

variables a named integer vector, identifying the variables in this plot by index in their
dataset and by name;

dataset the dataset associated with this plot and in which the variables reside;

ggobi the ggobi instance associated with this plot.

The last two of these are duplicates but are part of a general mechanism for describing
a plot separately of the containing ggobi instance.

1.3 The ActiveggobiInstance

Within the R session, there is a concept of an active or default ggobi instance. While all the
functions that operate on a ggobi instance allow one to specify to which instance the operation
should be applied, if this argument is omitted, the default instance is assumed. One can get a
reference to the default ggobi instance using the functiongetDefaultGGobi().

Similarly, one can set the default ggobi instance via the functionsetDefaultGGobi().

1.4 Querying aggobi instance

As mentioned above, thedescribe.ggobi()function can be used to create a description of a ggobi
instance.

The file names associated with the datasets in aggobi instance can be obtained with a call
to thegetFileNames.ggobi()function. This returns a list with an element for each dataset. By
default, each element of the list contains just the name of the primary file from which the data was
read. However, if theauxillary argument is passed asT, then the the names of the auxillary files
referenced in the primary one and read during the initialization of the dataset are also returned.

4

> ggobi("../ggobi/data/flea.xml")
> getFileNames.ggobi(T)
[[1]]
[1] "../ggobi/data/flea.xml" "../ggobi/data/stdColorMap.xml"

(Note the current version offlea.xml does not referencestdColorMap.xml.)
isValid.ggobi()determines whether the an object of classggobi is valid or not. Note that this

is useful for those programming the ggobi interaction, e.g. setting views, adding data, etc. Since
the user is able to close theggobi instance via a menu action (rather than programmatically), it is
often prudent to test whether the ggobi instance still exists when one is addressing it.

1.5 Destroying aggobi instance

To programmatically discard a particular ggobi instance one should use theclose.ggobi()function.
This takes care of releasing the windows and data associated with that instance, and also resets the
defaultggobi instance –getDefaultGGobi().

1.6 Event Handling

Ocassionally it is necessary to force R to handle events in ggobi to ensure its appearance is updated.
The functiongdk.flush()can be called liberally to effect this.

It is not (currently) possible to suspend a singleggobi instance. One can supsend them all by
removing the R-level event handler.

1.7 Session Constants

There are certain data values that can be considered shared across all ggobis, and others that are
also constant. The latter are settings or values that are used internally. They are accessible to
the S programmer/user so as to allow them to use names corresponding to internal constants. For
example, to specify the glyph for a point, the programmer might use a name, e.g."plus" .
However, this is passed toggobi in the internal form thatggobi recognizes, as1. This mapping is
made visible and can be done in the S language by (partial) matching the user’s human-readable
and descriptive name against the list of possible values and returning the internal code that matches.

There are several of these named internal code vectors that can be retrieved from theggobi
engine. They are:

getDataModes.ggobi()the list of data format names and their internal codes (an enumerated list
of integers);

ASCII binary R/S data XML MySQL Unknown
0 1 2 3 4 5

getViewTypes.ggobi()the names of the different plot types (and their internal codes);

Scatterplot Scatterplot Matrix Parallel Coordinates
0 1 2

5

getGlyphTypes.ggobi()The names of the glyph types and their internal codes1

plus x or fr oc fc .
1 2 3 4 5 6 7

getModeNames.ggobigetModeNames.ggobi()
[1] "1D Plot" "XYPlot" "Rotation" "1D Tour"
[5] "2D Tour" "Correlation Tour" "Scale" "Brush"
[9] "Identify" "Edit Lines" "Move Points" "Scatmat"

[13] "Parcoords"

getGlyphSizes.ggobi()()The admissable values for setting the glyph sizes.

[1] 0 1 2 3 4 5 6 7 8

As mentioned, these are constants and cannot be changed!
A colormap is a mapping of names or indices to color specifications. The colormap is not a

session constant but is particular to eachggobi instance. One can obtain the colormap
getColorMap.ggobi() setColorMap.ggobi()

1.8 Functions

getNumGGobis() getGGobi() ggobi()
setDefaultGGobi() getDefaultGGobi()
getViewTypes.ggobi() getModeNames.ggobi() getDataModes.ggobi() getGlyphTypes.ggobi() get-

GlyphSizes.ggobi()

2 TheggobiInstance

2.1 Creating theggobiInstance

We saw how to create aggobi instance via theggobi() function. This can be called multiple times
and has the effect of creating additional instances with the specified command line arguments
and/or R data sets.

The ggobi() function also allows us to specify data not just from a file, but also from within
R itself. We can pass a data frame as the first argument toggobi() and that will be added to the
resulting ggobi instance as a dataset. For example, to use the datasetmtcars()in the R distribution
in a ggobi instance, we can issue the commands

data(mtcars)
ggobi(mtcars)

1these are actually1-based in S, but converted to0-based inggobi.

6

Note that we can also specify a file to read on the command,in additionto specifying a dataset
from within R. This works becauseggobi()first creates aggobi instance andthenadds the R data
set to it. Thus, the command

g <- ggobi(mtcars, args=c("-xml", system.file("data/flea.xml.gz", pkg="Rggobi")))

will result in aggobi instance with2 data sets: flea and mtcars.
We can make further use of this facility to allow us to add new data sets at any time, not just

when we create theggobi instance. The functionsetData.ggobi()is used to specify either a file or
anS data set. (This calls one of the functionssetDataFile.ggobi()or setDataFrame.ggobi().)

ggobi(system.file("data/buckyball"))
df <- data.frame(x=rnorm(100), y=rnorm(100), z=rnorm(100))
setData.ggobi(df)
setData.ggobi(system.file("data/flea.xml"), mode="ASCII")

We also saw how one get obtain a description of theggobi instance using the functionde-
scribe.ggobi().

2.2 Querying the Instance

The dataset is an important element in the interaction with ggobi. Most functions that operate
on theggobi instance usually also take a dataset identifier as an argument (usually.data). The
identifier can be specified in several different forms.

index a number indicating the index of the dataset within the list of datasets. The first dataset is
identified by1. One can determine the number of datasets currently held by aggobiinstance
with the functiongetNumDatasets.ggobi(). Note that if a dataset is removed, the others are
moved and so indeces are not robust ways to identify a dataset.

name A character vector which matches the name of the dataset. The names of the datasets can be
obtained from aggobi instance using the functiongetDatasetNames.ggobi()and thenames()
on aggobi instance (i.e. thenames.ggobi()function). That is,

g <- ggobi()
getDatasetNames.ggobi(g) # or
names(g)

This is less convenient than using an index, but is robust to adding and removing datasets
as the names won’t change. In the unusual case that two datasets have the same name, this
cannot be used to reference the one later in the list.

ggobiDataset an object of classggobiDataset contains a reference uniquely identifying a dataset,
regardless of name or index. From then on, one can use this reference when referring to
a dataset. One can be obtain a reference to a dataset by using the functiongetDatasetRe-
ference.ggobi()which accepts the dataset identifier as an index or name. Note that there
is a convenient alternative togetDatasetReference.ggobi(). If one has theggobi instance
as a variable, sayg(), then its subset operator will do the same thing asgetDatasetRefer-
ence.ggobi().

7

g <- ggobi(system.file("data/buckyball"))
d <- g[1]

Additionally, the return value ofdescribe.ggobi()containsggobiDataset objects for each of
the different datasets.

In addition to the convenient syntax for obtaining the dataset reference, we have defined meth-
ods for dim(), dimnames(), nrow(), ncol(). for ggobiDataset objects. Objects of this class are
returned from the functionssetData(), setDataFile.ggobi()andsetDataFrame.ggobi(). Addition-
ally, we have defined a method for the[() operator

ggobi()
d <- setData.ggobi("../ggobi/data/flea")
dim(d)
ncol(d)
nrow(d)
dimnames(d)
rownames(d)
colnames(d)
names(d)

Currently, the assignment versions of these operations are not defined.

3 Datasets

We can query and set many of the characteristics of the dataset and the associated display in-
formation that controls the appearance of the plots involving records from this dataset. These
characteristics include

Variable Names getVariableNames.ggobi()and the names method for aggobiDataset return a
charcter vector off the names of the variables. For example, using the flea example data,

> names(g[1])
[1] "tars1" "tars2" "head" "aede1" "aede2" "aede3"

Note also thatdimnames(), dim(), ncol(), nrow(), rownames(), etc. all work on objects of
classggobiDataset().

rownames getRowNames.ggobi()andsetRowNames.ggobi()query and set the name or label of
one or more records.

glyphs both the plotting character/image and its size can be controlled via the functionsgetG-
lyphs.ggobi()andsetGlyphs.ggobi(). The available glyphs can be determined via the func-
tion getGlyphsTypes.ggobi(). Similarly, getGlyphSizes.ggobi()gives the permissible values
for the sizes.

8

color The color used to display a given record is stored with the dataset and can be queried and
set using the functionsgetColors.ggobi()andsetColors.ggobi()respectively.

hidden We can control whether a point is to be displayed or not in the different plots by marking
it as hidden or not. The functionsgetHiddenCases.ggobi()andsetHiddenCases.ggobi()both
query and set this status on the records in a given dataset.

Row groups getRowGroups.ggobi()andsetRowgroups.ggobi()

One can read the data from a ggobi instance into R via thegetData.ggobi()function.

getData.ggobi(.data=1)
g$getData()
g[1]$getData()

3.1 Modifying the Data

We have seen how to query and set many of the attributes of a dataset that control how the values
are displayed. We now turn our attention to functions for changing the structure of the dataset:
adding or removing a variable and replacing values. We have already seen how

setVariableName() setRowNames()
setVariableValues()

3.2 Removing Variables and Records

removeVariable.ggobi()

3.3 The Displays

We can count the number of displays or plot windows under the control of aggobi instance with
the functiongetDisplayCount.ggobi(). We can also get the number of plots within each display
with the functiongetPlotCount.ggobi().

It is often convenient to be able to refer to aggobidisplay directly. Just as we can refer toggobi
andggobiDataset objects, we can obtain references toggobiDisplay objects. We use the function
getDisplays.ggobi()with the argumentdescribebeingF.

We can get a list of objects describing the actual displays of aggobiinstance by callinggetDis-
plays.ggobi()with thedescribeargument asT. This returns a list with an element for each display.
Each of these elements is of classggobiDisplayDescription and its elements are described above
(see 1.2 above).

9

3.4 State of the Instance

We can determine which plot is active using the functiongetActivePlot.ggobi().
setActivePlot.ggobi().
We can determine the state of the brush region in a variety of different ways.
getBrushGlyph.ggobi() getBrushLocation.ggobi() getBrushSize.ggobi()
At any point, theggobi instance is in a particular mode. These modes include things such

as brushing, point identification, editing lines, active scatterplot matrix, active 1D plot, active
2D tour and so on. The full list of the names of these modes can be obtained via the function
getModeNames.ggobi().

> getModeNames.ggobi()
[1] "1D Plot" "XYPlot" "Rotation" "1D Tour"
[5] "2D Tour" "Correlation Tour" "Scale" "Brush"
[9] "Identify" "Edit Lines" "Move Points" "Scatmat"

[13] "Parcoords"

One can query the current mode in which the ggobi state is using the functiongetMode.ggobi().
Similarly, one can set the mode for theggobiinstance via the correspondingsetMode.ggobi()func-
tion. This expects an argument which is one of the names of the modes returned fromgetMode-
Names.ggobi(). Note that not all modes make sense from a programmatic stand point. Some are
descriptive and some are settable. Brushing, point identification, moving points are two that are
most useful.

setBrushColor.ggobi() setBrushGlyph.ggobi()

> g <- ggobi("../ggobi/data/flea.xml")
> g$setMode("Brush")
[1] "XYPlot"
> g$setBrushColor(12) # returns the old value - an un-named colour

0

setBrushLocation.ggobi() setBrushSize.ggobi()
Now we programmatically place the brush at a particular position on the display.

g$setBrushLocation(50, 50)
g$setBrushSize(100, 50)

Note that these are in pixel coordinates, and not the units of the plot.
We can determine which records are selectedgetSelectedIndices.ggobi()

> getSelectedIndices.ggobi()
Heptapot. Heptapot. Heptapot. Heptapot.

21 35 36 40

3.5 Functions

setDataFile.ggobi() setDataFrame.ggobi()
getDatasetNames.ggobi() names(g)()

10

4 Controlling Plots

We now move onto the next level of the hierarchy, the displays. Eachggobi instance supports
multiple simultaneous and linked displays. Each display in turn supports multiple plots within it.
We can interrogate the list of displays and also the plots within a display.()

The getDisplayOptions.ggobi()returns the settings that control the way in which plots are
displayed. The default values are given as

getDisplayOptions.ggobi()
Points Directed edges Undirected edges Edges

TRUE FALSE FALSE TRUE
Missing Values Grid Axes Center Axes

TRUE FALSE TRUE TRUE
Double Buffer Link

TRUE TRUE

These are explained as

Points

Directed edges

Undirected edges

Edges

Missing Values

Grid

Axes

Center Axes

Double Buffer

Link

One can change some or all of these settings via the functionsetDisplayOptions.ggobi(). Mod-
ifications to these do not apply to existing plots. Instead, they are applied to plots that are created
after they have been set.

setPlotRange()
setPlotVariables()

11

4.1 The.ggobi suffix

You may have noticed that almost of the functions in the ggobi interface end with the extension
.ggobi . This makes things slightly akward. The primary reason for this naming scheme is to
avoid name conflicts. (Namespaces might make it slightly simpler, but not significantly.) However,
there is a simpler syntax than appending the.ggobi suffix, and it is one that I both prefer and
encourage.

The functions defining the interface are global and almost all take aggobi object on which to
operate. This is theS style. TheC++ andJavaTM styles are more classically object oriented and
would have find the appropriate functionwithin theggobi object, and not globally. So, we can use
the same mechanism in R; namely, invoke a function within theggobi instance.

An example of how this style works shows the simpler interface. We start by creating aggobi
instance, but this time we make certain to assign the return value. (We can also retrieve it using
getDefaultGGobi().)

g <- ggobi(system.file("../ggobi/data/flea.xml"))

Now, suppose we want to invoke thegetDisplayCount.ggobi(). We can do this as

g$getDisplayCount()

and this returns the same result as callinggetDisplayCount.ggobi()directly.
Any of the functions namedx.ggobi()that take an argument named.gobican be called in this

manner. For example,

data(mtcars)
g$setData(mtcars)

Note that most of the functions that work on a dataset within a ggobi instance have a default
value for the dataset – the first one. If this is a suitable default, then one can use the ggobi instance
in this way to invoke the call. For example, suppose we want to get the glyph information for the
only dataset in the flea example.

g <- ggobi(system.file("../ggobi/data/flea.xml"))
g$getGlyphs()

We are, in fact, dispatching the call to the dataset, not the ggobi instance. But this works because of
the default argument for the.dataargument ingetGlyphs.ggobi(). A better programming practice
using the same style would have us do the following

g[1]$getGlyphs()

This would then turn into the equivalent of

d <- g[1] # d is now a ggobiDataset
getGlyphs.ggobi(.data=d, .gobi=d[["ggobi"]])

12

Of course, this means that we do not have to limit ourselves to the default dataset, but instead can
identify it when applying the[operator to theggobi object.

One of the benefits of overriding the $ operator is that it makes it less likely (i.e. slightly
more difficult) for users to dereference its fields such as–“red ref()˝. Since these are really hid-
den/opaque values that cannot be interpreted at the S level, making it harder to access them is a
good thing.

Note that this mechanism use the naming conventions of the calls and is not guaranteed to work
in general. It is more a convenient syntax that allows those of us who think in theC++ /JavaTM

style to be a little more at home. Since I think this is a more natural way to think about mutable
operations, objects and foreign refferences, I think it is useful.

5 Programmatic Display Generation

The user can interactively create new plots of different types using the Display menu on the main
panel of theggobi instance. Similarly, we can programmatically generate the same types of plots
via R commands. We can create instances of the standard plot types using the functionsscat-
mat.ggobi(), scatterplot.ggobi()andparcoords.ggobi(), described below. Each of these takes

• the variables to plot,

• the dataset in which these are to be found, and

• the ggobi instance in which the dataset is to be resolved.

As with most of the functions, one can specify a dataset instanceggobiDataset as the value of.data
argument and this will also specify the.gobiargument. Alternatively, one can specify the index or
name of the dataset and it will be resolved against by looking in the ggobi instance, which may be
the default one.

All that remains to create one of these displays is to specify the variables that are to be dis-
played. These can be specified by name or by index. The former is more readable and invariant
to adding or removing variables. The names can be retrieved via thegetVariableNames.ggobi()
function or thenames()method for theggobiDataset class.

getVariableNames.ggobi(.data = 1, .gobi=g)
names(g[1])

If one specifies the values as indices, recall that the first variable is given by1 and the last by

ncol(g[1])

Now, here are brief descriptions of each of the plots and some examples for creating them.

scatmat.ggobi()

g$scatmat()
g$scatmat(c("tars1", "tars2"))

A non-symmetric layout with

13

x[1] versus y[1], x[2] versus y[1]
x[1] versus y[2], x[2] versus y[2]

g$scatmat(c("tars1", "tars2"),c("head","aede1"))

scatterplot.ggobi()

parcoords.ggobi()

g$parcoords("tars1", "tars2", "aede1")
parcoords.ggobi(1,2,4)
g[1]$parcoords(1:3)

5.1 Programmed, Non-standard Layouts

These types of plots are more than adequate for most uses. However, they do place different
plot types in different windows. For instance, scatterplots and parallel coordinate plots are put in
different displays and the user must arrange these windows manually to best show the effects of the
linked plots. What is more desirable is to be able to put a collection of plots into a single window
and control how they are arranged. In this section, we describe how to do this using R commands.
Providing controls to create arbitrary displays inggobi’s graphical interface would complicate it
unecessarily. But providing programmatic control in R is another example of the advantages of
this style of interface.

The steps for creating a non-standard display are the following:

• create plotdescriptions, each defining the type of plot and the variables

• create a layout specification indicating the cells of a grid that each plot is to occupy

• combine the descriptions and layout information in a call toplotLayout().

The different plot descriptions are created with the functionsashDescription(), parallelCo-
ordDescription(), scatterplotDescription()and scatmatrixDescription(). Each of these takes an
arbitrary number of variable identifiers specifying which variables are to be displayed in this plot.
Obviously a scatterplot should only be given two variables. These identifiers can be given as vari-
able names or indices. Note that they are not resolved at this point. Instead, they are held in the
description and only resolved when the description is converted to an actual plot. This allows the
same description to be used with different datasets, effectively making it a template. One can op-
tionally specify the dataset and ggobi instance when creating the description and hence narrow or
specialize the description to be used only with that dataset. The concept of a template is to allow
one to effectively “program” a plot without actually writing an S expression or function.

The next piece to specify when creating a non-standard plot is the locations of the different plots
within the display. This is reasonably simple and is based on a grid and is common in different
GUI toolkits. One decomposes the display window (container) into anr × c grid. One positions a
plot by giving the left and right, and top and bottom cells which it is to occupy.

The functiongtkCells()is used for generating the basic specification for anr×c grid. It returns
the positions in which each plot occupies one cell. One can modify this object to create different

14

layouts. For example, suppose we want to have3 plots, with the first two being of equal size and
occupying the top row, and the third occupying the entire last row. To do this, we create a2 × 2
grid and postition the first two plots in cell(1, 1) and(1, 2). The third plot goes in the two cells of
the bottom row(2, 1), (2, 2).

This can be specified with the following commands.

l <- gtkCells(2,2)[-4,]
l[3, "right"] <- 3

We drop the last cell and then modify the3rd entry to span both columns by making the right-hand
column it borders be3 so that it occupies cells1 and2.

We can then couple the descriptions and the layout and the descriptions and create the display
usingplotLayout(). This takes an arbitrary number of description objects and the layout via the
cellsargument. It resolves the variables in the descriptions using either

a the description’s own dataset and ggobi specification, or

b the values specified in the call toplotLayout().

If the layout is very simple and puts one plot in each cell, one need only give the dimensions of the
grid via themfrowargument.

An example may help. (These examples and screen shots can be found athttp://www.ggobi.org/RSggobi/plotLayout.html .)

plot1 <- ashDescription("tars2")
plot2 <- scatmatrixDescription("tars1", "tars2", "head")
plot3 <- parallelCoordDescription("tars1", "tars2", "head")

Now, we will use the layout that we generated earlier.

g <- ggobi(system.file("data/flea"))
plotLayout(plot1, plot2, plot3, mfrow=c(2,2), cells = l, .gobi = g)

We can create a different layout and reuse the plot descriptions. This time, we will create a zig-
zag layout, with a plot in the top-left, middle-right and bottom-left cells. We do this by extracting
only the first, fourth and fifth cells.

l <- gtkCells(3,2)[c(1,4,5),]
plotLayout(plot1, plot2, plot3, mfrow=c(3,2), cells = l, .gobi = g)

The functionresolvePlotDescription()is responsible for instantiating the individual plots from
their descriptions.

We can organize the descriptions into a collection of plots via the functionplotList(). This is
not currently used but we will define methods for the classggobiPlotlist in the future.

5.2 Functions

plotLayout()
ashDescription(), parallelCoordDescription(), scatmatrixDescription() scatterplotDescription()
gtkCells()
resolvePlotDescription().

15

6 Using R Functions inggobi

So far, we have managed to provide a way for R users to integrate the visualization of data with
their other operations on that and related data. The communication between R andggobihas been
controlled entirely by the R user. We have, however, not made direct use ofggobibeing embedded
in R to implement functionality thatggobi requires by borrowing it from R. More specifically,
ggobi has not directly accessed any of the functionality of R for its computations. For the most
part, this has not been necessary. However, consider the following example.

Suppose we have a new methodology for smoothing and an algorithm implemented in the S-
language. We want to be able to use this in place ofggobi’s own smoothing functionality. What
we want to have happen is that our S function is called each time the user moves the slider to select
a different bandwidth for the smoothing. Then, our function is given the values for the x and y
variables involved in the smoothing and the new bandwidth value. It performs its computations
and returns the smoothed y values (predicted for the given x values). We can write a simple R
function to do this. Suppose we useloess()to perform the smoothing. Our function is then defined
as follows:

library(modreg) # to ensure the loess function is available.
function(x, y, w) {

predict(loess(y ˜ x, data.frame(x=x, y = y), span = w))
}

Now, we have to arrange to have it called by ggobi when the value of the slider controlling the
bandwidth is changed. We do this with the S functionsetSmootherFunction.ggobi(). This registers
the function with ggobi and is invoked at the appropriate times.

(Note that I cannot currently find ggobi’s smoothing slider given the recent changes to the
interface.)

We can also find the definition of the current S smoothing function registered withggobiusing
the functiongetSmootherFunction.ggobi(). This returns the function object itself.

6.1 Identifying Points

A second form of having ggobi interact with R is when we are usingggobi’s Identifymode which
allows the user to move around a plot and have the label of a point be displayed when the mouse
moves over it. Rather than simply displaying the label, an R user might want to use this “browsing”
in a more programmatic way. For example, we might use it as a more advanced form of the
locator() function, and store which points were identified. Similarly, as each point is identified,
we might highlight the corresponding row in a spreadsheet, or update an R plot appropriately. In
other words, we can link actions in aggobiplot not only to otherggobiplots, but to other objects
accessible from S and all usingggobi’s notification mechanism.

We first illustrate how to program the simplest of these interactions, namely, just printing the
index of the selected/identified observation each time the user moves over a point in the plot. The
following R function does exactly what we want.

f <- function(id, display) {

16

print(id)
}

ggobicalls it with two arguments: the index of the observation being identified and also an object
of classggobiDisplay which identifies which display the identification is being performed and
indirectly (via the display) in which dataset the observation resides.

We can now register this with ggobi

setIdentifyHandler.ggobi(f)

We can switch to Identify mode programmatically via the expression

setMode.ggobi("Identify")

and now to test this, move your mouse around the currently active plot and watch what is printed
out on the R console.

One can easily imagine doing something more interesting, such as highlighting a row in a
spread-sheet, etc. Our example would not change except for replacing the call toprint() with a call
to something that modified the view of the spread-sheet. The key thing about this example is that
we can perform our response solely in terms of the information in this call.

Now we will try to illustrate how to create an R function that accumulates a list of the indices
of the identified points. Each time the user identifies a point,ggobiwill call our R function and we
will add it to the list. Since there will be multiple calls to this function – one each time a point is
identified – we must have a way of storing the indices of the points across these different calls. We
use an R closure for this purpose. We define a function which returns two functions. When either
of these two functions are called, they can see the same shared variables that were defined within
the top-level function in which they themselves were defined.

identifyGen <-
function() {

identified <- integer(0)

identify <- function(id, display) {
append the new id onto the

identified <<- c(identified, id)
}

list(identify = idenfity, indices = function() unique(identified))
}

So now we can invoke the functionidentifyGen()and register the functionidentify function it
returns as the R-ggobi identify handler.

i <- identifyGen()
setIdentifyHandler.ggobi(i)
setMode.ggobi("Identify")

17

Once again, move the mouse around the active plot. When you have selected several points, return
to the R prompt and issue the command

i$indices()

You should see the indices of the points that you selected.
As with thegetSmootherFunction.ggobi(), one can query the currently registered identify han-

dler usinggetIdentifyHandler.ggobi().
We chose to implement the simple example here to avoid having to depend on the existence of

other R packages and software, etc. The idea should be clear and it should be reasonable clear how
to program other style of interaction.

The smoothing and identify examples are presented here and implemented in the R-ggobi in-
terface not because they are themselves the most compelling choices for allowing ggobi to call
R functions. Rather, they are examples to illustrate that this style of interaction and extensible,
programmatic customization of ggobi is possible. We, the developers ofggobi, can add hooks so
that callbacks can be registered for differentggobievents. We are very open to suggestions as to
what are useful events and what information should be supplied to callbacks.

18

