// Notes on standards compliance: https://datatracker.ietf.org/doc/html/rfc8259
// * RFC 8259 requires JSON documents be valid UTF-8,
// but makes an allowance for systems that are "part of a closed ecosystem".
// I have no idea what that's supposed to mean in the context of a standard specification.
// This implementation requires inputs to be valid UTF-8.
// * RFC 8259 contradicts itself regarding whether lowercase is allowed in \u hex digits,
// but this is probably a bug in the spec, and it's clear that lowercase is meant to be allowed.
// (RFC 5234 defines HEXDIG to only allow uppercase.)
// * When RFC 8259 refers to a "character", I assume they really mean a "Unicode scalar value".
// See http://www.unicode.org/glossary/#unicode_scalar_value .
// * RFC 8259 doesn't explicitly disallow unpaired surrogate halves in \u escape sequences,
// but vaguely implies that \u escapes are for encoding Unicode "characters" (i.e. Unicode scalar values?),
// which would mean that unpaired surrogate halves are forbidden.
// By contrast ECMA-404 (a competing(/compatible?) JSON standard, which JavaScript's JSON.parse() conforms to)
// explicitly allows unpaired surrogate halves.
// This implementation forbids unpaired surrogate halves in \u sequences.
// If a high surrogate half appears in a \u sequence,
// then a low surrogate half must immediately follow in \u notation.
// * RFC 8259 allows implementations to "accept non-JSON forms or extensions".
// This implementation does not accept any of that.
// * RFC 8259 allows implementations to put limits on "the size of texts",
// "the maximum depth of nesting", "the range and precision of numbers",
// and "the length and character contents of strings".
// This low-level implementation does not limit these,
// except where noted above, and except that nesting depth requires memory allocation.
// Note that this low-level API does not interpret numbers numerically,
// but simply emits their source form for some higher level code to make sense of.
// * This low-level implementation allows duplicate object keys,
// and key/value pairs are emitted in the order they appear in the input.
const std = @import("std");
const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;
const assert = std.debug.assert;
const BitStack = std.BitStack;
/// Scan the input and check for malformed JSON.
/// On `SyntaxError` or `UnexpectedEndOfInput`, returns `false`.
/// Returns any errors from the allocator as-is, which is unlikely,
/// but can be caused by extreme nesting depth in the input.
pub fn validate(allocator: Allocator, s: []const u8) Allocator.Error!bool {
var scanner = Scanner.initCompleteInput(allocator, s);
defer scanner.deinit();
while (true) {
const token = scanner.next() catch |err| switch (err) {
error.SyntaxError, error.UnexpectedEndOfInput => return false,
error.OutOfMemory => return error.OutOfMemory,
error.BufferUnderrun => unreachable,
};
if (token == .end_of_document) break;
}
return true;
}
/// The parsing errors are divided into two categories:
/// * `SyntaxError` is for clearly malformed JSON documents,
/// such as giving an input document that isn't JSON at all.
/// * `UnexpectedEndOfInput` is for signaling that everything's been
/// valid so far, but the input appears to be truncated for some reason.
/// Note that a completely empty (or whitespace-only) input will give `UnexpectedEndOfInput`.
pub const Error = error{ SyntaxError, UnexpectedEndOfInput };
/// Calls `std.json.Reader` with `std.json.default_buffer_size`.
pub fn reader(allocator: Allocator, io_reader: anytype) Reader(default_buffer_size, @TypeOf(io_reader)) {
return Reader(default_buffer_size, @TypeOf(io_reader)).init(allocator, io_reader);
}
/// Used by `json.reader`.
pub const default_buffer_size = 0x1000;
/// The tokens emitted by `std.json.Scanner` and `std.json.Reader` `.next*()` functions follow this grammar:
/// ```
/// <document> = <value> .end_of_document
/// <value> =
/// | <object>
/// | <array>
/// | <number>
/// | <string>
/// | .true
/// | .false
/// | .null
/// <object> = .object_begin ( <string> <value> )* .object_end
/// <array> = .array_begin ( <value> )* .array_end
/// <number> = <It depends. See below.>
/// <string> = <It depends. See below.>
/// ```
///
/// What you get for `<number>` and `<string>` values depends on which `next*()` method you call:
///
/// ```
/// next():
/// <number> = ( .partial_number )* .number
/// <string> = ( <partial_string> )* .string
/// <partial_string> =
/// | .partial_string
/// | .partial_string_escaped_1
/// | .partial_string_escaped_2
/// | .partial_string_escaped_3
/// | .partial_string_escaped_4
///
/// nextAlloc*(..., .alloc_always):
/// <number> = .allocated_number
/// <string> = .allocated_string
///
/// nextAlloc*(..., .alloc_if_needed):
/// <number> =
/// | .number
/// | .allocated_number
/// <string> =
/// | .string
/// | .allocated_string
/// ```
///
/// For all tokens with a `[]const u8`, `[]u8`, or `[n]u8` payload, the payload represents the content of the value.
/// For number values, this is the representation of the number exactly as it appears in the input.
/// For strings, this is the content of the string after resolving escape sequences.
///
/// For `.allocated_number` and `.allocated_string`, the `[]u8` payloads are allocations made with the given allocator.
/// You are responsible for managing that memory. `json.Reader.deinit()` does *not* free those allocations.
///
/// The `.partial_*` tokens indicate that a value spans multiple input buffers or that a string contains escape sequences.
/// To get a complete value in memory, you need to concatenate the values yourself.
/// Calling `nextAlloc*()` does this for you, and returns an `.allocated_*` token with the result.
///
/// For tokens with a `[]const u8` payload, the payload is a slice into the current input buffer.
/// The memory may become undefined during the next call to `json.Scanner.feedInput()`
/// or any `json.Reader` method whose return error set includes `json.Error`.
/// To keep the value persistently, it recommended to make a copy or to use `.alloc_always`,
/// which makes a copy for you.
///
/// Note that `.number` and `.string` tokens that follow `.partial_*` tokens may have `0` length to indicate that
/// the previously partial value is completed with no additional bytes.
/// (This can happen when the break between input buffers happens to land on the exact end of a value. E.g. `"[1234"`, `"]"`.)
/// `.partial_*` tokens never have `0` length.
///
/// The recommended strategy for using the different `next*()` methods is something like this:
///
/// When you're expecting an object key, use `.alloc_if_needed`.
/// You often don't need a copy of the key string to persist; you might just check which field it is.
/// In the case that the key happens to require an allocation, free it immediately after checking it.
///
/// When you're expecting a meaningful string value (such as on the right of a `:`),
/// use `.alloc_always` in order to keep the value valid throughout parsing the rest of the document.
///
/// When you're expecting a number value, use `.alloc_if_needed`.
/// You're probably going to be parsing the string representation of the number into a numeric representation,
/// so you need the complete string representation only temporarily.
///
/// When you're skipping an unrecognized value, use `skipValue()`.
pub const Token = union(enum) {
object_begin,
object_end,
array_begin,
array_end,
true,
false,
null,
number: []const u8,
partial_number: []const u8,
allocated_number: []u8,
string: []const u8,
partial_string: []const u8,
partial_string_escaped_1: [1]u8,
partial_string_escaped_2: [2]u8,
partial_string_escaped_3: [3]u8,
partial_string_escaped_4: [4]u8,
allocated_string: []u8,
end_of_document,
};
/// This is only used in `peekNextTokenType()` and gives a categorization based on the first byte of the next token that will be emitted from a `next*()` call.
pub const TokenType = enum {
object_begin,
object_end,
array_begin,
array_end,
true,
false,
null,
number,
string,
end_of_document,
};
/// To enable diagnostics, declare `var diagnostics = Diagnostics{};` then call `source.enableDiagnostics(&diagnostics);`
/// where `source` is either a `std.json.Reader` or a `std.json.Scanner` that has just been initialized.
/// At any time, notably just after an error, call `getLine()`, `getColumn()`, and/or `getByteOffset()`
/// to get meaningful information from this.
pub const Diagnostics = struct {
line_number: u64 = 1,
line_start_cursor: usize = @as(usize, @bitCast(@as(isize, -1))), // Start just "before" the input buffer to get a 1-based column for line 1.
total_bytes_before_current_input: u64 = 0,
cursor_pointer: *const usize = undefined,
/// Starts at 1.
pub fn getLine(self: *const @This()) u64 {
return self.line_number;
}
/// Starts at 1.
pub fn getColumn(self: *const @This()) u64 {
return self.cursor_pointer.* -% self.line_start_cursor;
}
/// Starts at 0. Measures the byte offset since the start of the input.
pub fn getByteOffset(self: *const @This()) u64 {
return self.total_bytes_before_current_input + self.cursor_pointer.*;
}
};
/// See the documentation for `std.json.Token`.
pub const AllocWhen = enum { alloc_if_needed, alloc_always };
/// For security, the maximum size allocated to store a single string or number value is limited to 4MiB by default.
/// This limit can be specified by calling `nextAllocMax()` instead of `nextAlloc()`.
pub const default_max_value_len = 4 * 1024 * 1024;
/// Connects a `std.io.Reader` to a `std.json.Scanner`.
/// All `next*()` methods here handle `error.BufferUnderrun` from `std.json.Scanner`, and then read from the reader.
pub fn Reader(comptime buffer_size: usize, comptime ReaderType: type) type {
return struct {
scanner: Scanner,
reader: ReaderType,
buffer: [buffer_size]u8 = undefined,
/// The allocator is only used to track `[]` and `{}` nesting levels.
pub fn init(allocator: Allocator, io_reader: ReaderType) @This() {
return .{
.scanner = Scanner.initStreaming(allocator),
.reader = io_reader,
};
}
pub fn deinit(self: *@This()) void {
self.scanner.deinit();
self.* = undefined;
}
/// Calls `std.json.Scanner.enableDiagnostics`.
pub fn enableDiagnostics(self: *@This(), diagnostics: *Diagnostics) void {
self.scanner.enableDiagnostics(diagnostics);
}
pub const NextError = ReaderType.Error || Error || Allocator.Error;
pub const SkipError = NextError;
pub const AllocError = NextError || error{ValueTooLong};
pub const PeekError = ReaderType.Error || Error;
/// Equivalent to `nextAllocMax(allocator, when, default_max_value_len);`
/// See also `std.json.Token` for documentation of `nextAlloc*()` function behavior.
pub fn nextAlloc(self: *@This(), allocator: Allocator, when: AllocWhen) AllocError!Token {
return self.nextAllocMax(allocator, when, default_max_value_len);
}
/// See also `std.json.Token` for documentation of `nextAlloc*()` function behavior.
pub fn nextAllocMax(self: *@This(), allocator: Allocator, when: AllocWhen, max_value_len: usize) AllocError!Token {
const token_type = try self.peekNextTokenType();
switch (token_type) {
.number, .string => {
var value_list = ArrayList(u8).init(allocator);
errdefer {
value_list.deinit();
}
if (try self.allocNextIntoArrayListMax(&value_list, when, max_value_len)) |slice| {
return if (token_type == .number)
Token{ .number = slice }
else
Token{ .string = slice };
} else {
return if (token_type == .number)
Token{ .allocated_number = try value_list.toOwnedSlice() }
else
Token{ .allocated_string = try value_list.toOwnedSlice() };
}
},
// Simple tokens never alloc.
.object_begin,
.object_end,
.array_begin,
.array_end,
.true,
.false,
.null,
.end_of_document,
=> return try self.next(),
}
}
/// Equivalent to `allocNextIntoArrayListMax(value_list, when, default_max_value_len);`
pub fn allocNextIntoArrayList(self: *@This(), value_list: *ArrayList(u8), when: AllocWhen) AllocError!?[]const u8 {
return self.allocNextIntoArrayListMax(value_list, when, default_max_value_len);
}
/// Calls `std.json.Scanner.allocNextIntoArrayListMax` and handles `error.BufferUnderrun`.
pub fn allocNextIntoArrayListMax(self: *@This(), value_list: *ArrayList(u8), when: AllocWhen, max_value_len: usize) AllocError!?[]const u8 {
while (true) {
return self.scanner.allocNextIntoArrayListMax(value_list, when, max_value_len) catch |err| switch (err) {
error.BufferUnderrun => {
try self.refillBuffer();
continue;
},
else => |other_err| return other_err,
};
}
}
/// Like `std.json.Scanner.skipValue`, but handles `error.BufferUnderrun`.
pub fn skipValue(self: *@This()) SkipError!void {
switch (try self.peekNextTokenType()) {
.object_begin, .array_begin => {
try self.skipUntilStackHeight(self.stackHeight());
},
.number, .string => {
while (true) {
switch (try self.next()) {
.partial_number,
.partial_string,
.partial_string_escaped_1,
.partial_string_escaped_2,
.partial_string_escaped_3,
.partial_string_escaped_4,
=> continue,
.number, .string => break,
else => unreachable,
}
}
},
.true, .false, .null => {
_ = try self.next();
},
.object_end, .array_end, .end_of_document => unreachable, // Attempt to skip a non-value token.
}
}
/// Like `std.json.Scanner.skipUntilStackHeight()` but handles `error.BufferUnderrun`.
pub fn skipUntilStackHeight(self: *@This(), terminal_stack_height: usize) NextError!void {
while (true) {
return self.scanner.skipUntilStackHeight(terminal_stack_height) catch |err| switch (err) {
error.BufferUnderrun => {
try self.refillBuffer();
continue;
},
else => |other_err| return other_err,
};
}
}
/// Calls `std.json.Scanner.stackHeight`.
pub fn stackHeight(self: *const @This()) usize {
return self.scanner.stackHeight();
}
/// Calls `std.json.Scanner.ensureTotalStackCapacity`.
pub fn ensureTotalStackCapacity(self: *@This(), height: usize) Allocator.Error!void {
try self.scanner.ensureTotalStackCapacity(height);
}
/// See `std.json.Token` for documentation of this function.
pub fn next(self: *@This()) NextError!Token {
while (true) {
return self.scanner.next() catch |err| switch (err) {
error.BufferUnderrun => {
try self.refillBuffer();
continue;
},
else => |other_err| return other_err,
};
}
}
/// See `std.json.Scanner.peekNextTokenType()`.
pub fn peekNextTokenType(self: *@This()) PeekError!TokenType {
while (true) {
return self.scanner.peekNextTokenType() catch |err| switch (err) {
error.BufferUnderrun => {
try self.refillBuffer();
continue;
},
else => |other_err| return other_err,
};
}
}
fn refillBuffer(self: *@This()) ReaderType.Error!void {
const input = self.buffer[0..try self.reader.read(self.buffer[0..])];
if (input.len > 0) {
self.scanner.feedInput(input);
} else {
self.scanner.endInput();
}
}
};
}
/// The lowest level parsing API in this package;
/// supports streaming input with a low memory footprint.
/// The memory requirement is `O(d)` where d is the nesting depth of `[]` or `{}` containers in the input.
/// Specifically `d/8` bytes are required for this purpose,
/// with some extra buffer according to the implementation of `std.ArrayList`.
///
/// This scanner can emit partial tokens; see `std.json.Token`.
/// The input to this class is a sequence of input buffers that you must supply one at a time.
/// Call `feedInput()` with the first buffer, then call `next()` repeatedly until `error.BufferUnderrun` is returned.
/// Then call `feedInput()` again and so forth.
/// Call `endInput()` when the last input buffer has been given to `feedInput()`, either immediately after calling `feedInput()`,
/// or when `error.BufferUnderrun` requests more data and there is no more.
/// Be sure to call `next()` after calling `endInput()` until `Token.end_of_document` has been returned.
pub const Scanner = struct {
state: State = .value,
string_is_object_key: bool = false,
stack: BitStack,
value_start: usize = undefined,
unicode_code_point: u21 = undefined,
input: []const u8 = "",
cursor: usize = 0,
is_end_of_input: bool = false,
diagnostics: ?*Diagnostics = null,
/// The allocator is only used to track `[]` and `{}` nesting levels.
pub fn initStreaming(allocator: Allocator) @This() {
return .{
.stack = BitStack.init(allocator),
};
}
/// Use this if your input is a single slice.
/// This is effectively equivalent to:
/// ```
/// initStreaming(allocator);
/// feedInput(complete_input);
/// endInput();
/// ```
pub fn initCompleteInput(allocator: Allocator, complete_input: []const u8) @This() {
return .{
.stack = BitStack.init(allocator),
.input = complete_input,
.is_end_of_input = true,
};
}
pub fn deinit(self: *@This()) void {
self.stack.deinit();
self.* = undefined;
}
pub fn enableDiagnostics(self: *@This(), diagnostics: *Diagnostics) void {
diagnostics.cursor_pointer = &self.cursor;
self.diagnostics = diagnostics;
}
/// Call this whenever you get `error.BufferUnderrun` from `next()`.
/// When there is no more input to provide, call `endInput()`.
pub fn feedInput(self: *@This(), input: []const u8) void {
assert(self.cursor == self.input.len); // Not done with the last input slice.
if (self.diagnostics) |diag| {
diag.total_bytes_before_current_input += self.input.len;
// This usually goes "negative" to measure how far before the beginning
// of the new buffer the current line started.
diag.line_start_cursor -%= self.cursor;
}
self.input = input;
self.cursor = 0;
self.value_start = 0;
}
/// Call this when you will no longer call `feedInput()` anymore.
/// This can be called either immediately after the last `feedInput()`,
/// or at any time afterward, such as when getting `error.BufferUnderrun` from `next()`.
/// Don't forget to call `next*()` after `endInput()` until you get `.end_of_document`.
pub fn endInput(self: *@This()) void {
self.is_end_of_input = true;
}
pub const NextError = Error || Allocator.Error || error{BufferUnderrun};
pub const AllocError = Error || Allocator.Error || error{ValueTooLong};
pub const PeekError = Error || error{BufferUnderrun};
pub const SkipError = Error || Allocator.Error;
pub const AllocIntoArrayListError = AllocError || error{BufferUnderrun};
/// Equivalent to `nextAllocMax(allocator, when, default_max_value_len);`
/// This function is only available after `endInput()` (or `initCompleteInput()`) has been called.
/// See also `std.json.Token` for documentation of `nextAlloc*()` function behavior.
pub fn nextAlloc(self: *@This(), allocator: Allocator, when: AllocWhen) AllocError!Token {
return self.nextAllocMax(allocator, when, default_max_value_len);
}
/// This function is only available after `endInput()` (or `initCompleteInput()`) has been called.
/// See also `std.json.Token` for documentation of `nextAlloc*()` function behavior.
pub fn nextAllocMax(self: *@This(), allocator: Allocator, when: AllocWhen, max_value_len: usize) AllocError!Token {
assert(self.is_end_of_input); // This function is not available in streaming mode.
const token_type = self.peekNextTokenType() catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
};
switch (token_type) {
.number, .string => {
var value_list = ArrayList(u8).init(allocator);
errdefer {
value_list.deinit();
}
if (self.allocNextIntoArrayListMax(&value_list, when, max_value_len) catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
}) |slice| {
return if (token_type == .number)
Token{ .number = slice }
else
Token{ .string = slice };
} else {
return if (token_type == .number)
Token{ .allocated_number = try value_list.toOwnedSlice() }
else
Token{ .allocated_string = try value_list.toOwnedSlice() };
}
},
// Simple tokens never alloc.
.object_begin,
.object_end,
.array_begin,
.array_end,
.true,
.false,
.null,
.end_of_document,
=> return self.next() catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
},
}
}
/// Equivalent to `allocNextIntoArrayListMax(value_list, when, default_max_value_len);`
pub fn allocNextIntoArrayList(self: *@This(), value_list: *ArrayList(u8), when: AllocWhen) AllocIntoArrayListError!?[]const u8 {
return self.allocNextIntoArrayListMax(value_list, when, default_max_value_len);
}
/// The next token type must be either `.number` or `.string`. See `peekNextTokenType()`.
/// When allocation is not necessary with `.alloc_if_needed`,
/// this method returns the content slice from the input buffer, and `value_list` is not touched.
/// When allocation is necessary or with `.alloc_always`, this method concatenates partial tokens into the given `value_list`,
/// and returns `null` once the final `.number` or `.string` token has been written into it.
/// In case of an `error.BufferUnderrun`, partial values will be left in the given value_list.
/// The given `value_list` is never reset by this method, so an `error.BufferUnderrun` situation
/// can be resumed by passing the same array list in again.
/// This method does not indicate whether the token content being returned is for a `.number` or `.string` token type;
/// the caller of this method is expected to know which type of token is being processed.
pub fn allocNextIntoArrayListMax(self: *@This(), value_list: *ArrayList(u8), when: AllocWhen, max_value_len: usize) AllocIntoArrayListError!?[]const u8 {
while (true) {
const token = try self.next();
switch (token) {
// Accumulate partial values.
.partial_number, .partial_string => |slice| {
try appendSlice(value_list, slice, max_value_len);
},
.partial_string_escaped_1 => |buf| {
try appendSlice(value_list, buf[0..], max_value_len);
},
.partial_string_escaped_2 => |buf| {
try appendSlice(value_list, buf[0..], max_value_len);
},
.partial_string_escaped_3 => |buf| {
try appendSlice(value_list, buf[0..], max_value_len);
},
.partial_string_escaped_4 => |buf| {
try appendSlice(value_list, buf[0..], max_value_len);
},
// Return complete values.
.number => |slice| {
if (when == .alloc_if_needed and value_list.items.len == 0) {
// No alloc necessary.
return slice;
}
try appendSlice(value_list, slice, max_value_len);
// The token is complete.
return null;
},
.string => |slice| {
if (when == .alloc_if_needed and value_list.items.len == 0) {
// No alloc necessary.
return slice;
}
try appendSlice(value_list, slice, max_value_len);
// The token is complete.
return null;
},
.object_begin,
.object_end,
.array_begin,
.array_end,
.true,
.false,
.null,
.end_of_document,
=> unreachable, // Only .number and .string token types are allowed here. Check peekNextTokenType() before calling this.
.allocated_number, .allocated_string => unreachable,
}
}
}
/// This function is only available after `endInput()` (or `initCompleteInput()`) has been called.
/// If the next token type is `.object_begin` or `.array_begin`,
/// this function calls `next()` repeatedly until the corresponding `.object_end` or `.array_end` is found.
/// If the next token type is `.number` or `.string`,
/// this function calls `next()` repeatedly until the (non `.partial_*`) `.number` or `.string` token is found.
/// If the next token type is `.true`, `.false`, or `.null`, this function calls `next()` once.
/// The next token type must not be `.object_end`, `.array_end`, or `.end_of_document`;
/// see `peekNextTokenType()`.
pub fn skipValue(self: *@This()) SkipError!void {
assert(self.is_end_of_input); // This function is not available in streaming mode.
switch (self.peekNextTokenType() catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
}) {
.object_begin, .array_begin => {
self.skipUntilStackHeight(self.stackHeight()) catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
};
},
.number, .string => {
while (true) {
switch (self.next() catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
}) {
.partial_number,
.partial_string,
.partial_string_escaped_1,
.partial_string_escaped_2,
.partial_string_escaped_3,
.partial_string_escaped_4,
=> continue,
.number, .string => break,
else => unreachable,
}
}
},
.true, .false, .null => {
_ = self.next() catch |e| switch (e) {
error.BufferUnderrun => unreachable,
else => |err| return err,
};
},
.object_end, .array_end, .end_of_document => unreachable, // Attempt to skip a non-value token.
}
}
/// Skip tokens until an `.object_end` or `.array_end` token results in a `stackHeight()` equal the given stack height.
/// Unlike `skipValue()`, this function is available in streaming mode.
pub fn skipUntilStackHeight(self: *@This(), terminal_stack_height: usize) NextError!void {
while (true) {
switch (try self.next()) {
.object_end, .array_end => {
if (self.stackHeight() == terminal_stack_height) break;
},
.end_of_document => unreachable,
else => continue,
}
}
}
/// The depth of `{}` or `[]` nesting levels at the current position.
pub fn stackHeight(self: *const @This()) usize {
return self.stack.bit_len;
}
/// Pre allocate memory to hold the given number of nesting levels.
/// `stackHeight()` up to the given number will not cause allocations.
pub fn ensureTotalStackCapacity(self: *@This(), height: usize) Allocator.Error!void {
try self.stack.ensureTotalCapacity(height);
}
/// See `std.json.Token` for documentation of this function.
pub fn next(self: *@This()) NextError!Token {
state_loop: while (true) {
switch (self.state) {
.value => {
switch (try self.skipWhitespaceExpectByte()) {
// Object, Array
'{' => {
try self.stack.push(OBJECT_MODE);
self.cursor += 1;
self.state = .object_start;
return .object_begin;
},
'[' => {
try self.stack.push(ARRAY_MODE);
self.cursor += 1;
self.state = .array_start;
return .array_begin;
},
// String
'"' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
continue :state_loop;
},
// Number
'1'...'9' => {
self.value_start = self.cursor;
self.cursor += 1;
self.state = .number_int;
continue :state_loop;
},
'0' => {
self.value_start = self.cursor;
self.cursor += 1;
self.state = .number_leading_zero;
continue :state_loop;
},
'-' => {
self.value_start = self.cursor;
self.cursor += 1;
self.state = .number_minus;
continue :state_loop;
},
// literal values
't' => {
self.cursor += 1;
self.state = .literal_t;
continue :state_loop;
},
'f' => {
self.cursor += 1;
self.state = .literal_f;
continue :state_loop;
},
'n' => {
self.cursor += 1;
self.state = .literal_n;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.post_value => {
if (try self.skipWhitespaceCheckEnd()) return .end_of_document;
const c = self.input[self.cursor];
if (self.string_is_object_key) {
self.string_is_object_key = false;
switch (c) {
':' => {
self.cursor += 1;
self.state = .value;
continue :state_loop;
},
else => return error.SyntaxError,
}
}
switch (c) {
'}' => {
if (self.stack.pop() != OBJECT_MODE) return error.SyntaxError;
self.cursor += 1;
// stay in .post_value state.
return .object_end;
},
']' => {
if (self.stack.pop() != ARRAY_MODE) return error.SyntaxError;
self.cursor += 1;
// stay in .post_value state.
return .array_end;
},
',' => {
switch (self.stack.peek()) {
OBJECT_MODE => {
self.state = .object_post_comma;
},
ARRAY_MODE => {
self.state = .value;
},
}
self.cursor += 1;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.object_start => {
switch (try self.skipWhitespaceExpectByte()) {
'"' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
self.string_is_object_key = true;
continue :state_loop;
},
'}' => {
self.cursor += 1;
_ = self.stack.pop();
self.state = .post_value;
return .object_end;
},
else => return error.SyntaxError,
}
},
.object_post_comma => {
switch (try self.skipWhitespaceExpectByte()) {
'"' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
self.string_is_object_key = true;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.array_start => {
switch (try self.skipWhitespaceExpectByte()) {
']' => {
self.cursor += 1;
_ = self.stack.pop();
self.state = .post_value;
return .array_end;
},
else => {
self.state = .value;
continue :state_loop;
},
}
},
.number_minus => {
if (self.cursor >= self.input.len) return self.endOfBufferInNumber(false);
switch (self.input[self.cursor]) {
'0' => {
self.cursor += 1;
self.state = .number_leading_zero;
continue :state_loop;
},
'1'...'9' => {
self.cursor += 1;
self.state = .number_int;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.number_leading_zero => {
if (self.cursor >= self.input.len) return self.endOfBufferInNumber(true);
switch (self.input[self.cursor]) {
'.' => {
self.cursor += 1;
self.state = .number_post_dot;
continue :state_loop;
},
'e', 'E' => {
self.cursor += 1;
self.state = .number_post_e;
continue :state_loop;
},
else => {
self.state = .post_value;
return Token{ .number = self.takeValueSlice() };
},
}
},
.number_int => {
while (self.cursor < self.input.len) : (self.cursor += 1) {
switch (self.input[self.cursor]) {
'0'...'9' => continue,
'.' => {
self.cursor += 1;
self.state = .number_post_dot;
continue :state_loop;
},
'e', 'E' => {
self.cursor += 1;
self.state = .number_post_e;
continue :state_loop;
},
else => {
self.state = .post_value;
return Token{ .number = self.takeValueSlice() };
},
}
}
return self.endOfBufferInNumber(true);
},
.number_post_dot => {
if (self.cursor >= self.input.len) return self.endOfBufferInNumber(false);
switch (try self.expectByte()) {
'0'...'9' => {
self.cursor += 1;
self.state = .number_frac;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.number_frac => {
while (self.cursor < self.input.len) : (self.cursor += 1) {
switch (self.input[self.cursor]) {
'0'...'9' => continue,
'e', 'E' => {
self.cursor += 1;
self.state = .number_post_e;
continue :state_loop;
},
else => {
self.state = .post_value;
return Token{ .number = self.takeValueSlice() };
},
}
}
return self.endOfBufferInNumber(true);
},
.number_post_e => {
if (self.cursor >= self.input.len) return self.endOfBufferInNumber(false);
switch (self.input[self.cursor]) {
'0'...'9' => {
self.cursor += 1;
self.state = .number_exp;
continue :state_loop;
},
'+', '-' => {
self.cursor += 1;
self.state = .number_post_e_sign;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.number_post_e_sign => {
if (self.cursor >= self.input.len) return self.endOfBufferInNumber(false);
switch (self.input[self.cursor]) {
'0'...'9' => {
self.cursor += 1;
self.state = .number_exp;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.number_exp => {
while (self.cursor < self.input.len) : (self.cursor += 1) {
switch (self.input[self.cursor]) {
'0'...'9' => continue,
else => {
self.state = .post_value;
return Token{ .number = self.takeValueSlice() };
},
}
}
return self.endOfBufferInNumber(true);
},
.string => {
while (self.cursor < self.input.len) : (self.cursor += 1) {
switch (self.input[self.cursor]) {
0...0x1f => return error.SyntaxError, // Bare ASCII control code in string.
// ASCII plain text.
0x20...('"' - 1), ('"' + 1)...('\\' - 1), ('\\' + 1)...0x7F => continue,
// Special characters.
'"' => {
const result = Token{ .string = self.takeValueSlice() };
self.cursor += 1;
self.state = .post_value;
return result;
},
'\\' => {
const slice = self.takeValueSlice();
self.cursor += 1;
self.state = .string_backslash;
if (slice.len > 0) return Token{ .partial_string = slice };
continue :state_loop;
},
// UTF-8 validation.
// See http://unicode.org/mail-arch/unicode-ml/y2003-m02/att-0467/01-The_Algorithm_to_Valide_an_UTF-8_String
0xC2...0xDF => {
self.cursor += 1;
self.state = .string_utf8_last_byte;
continue :state_loop;
},
0xE0 => {
self.cursor += 1;
self.state = .string_utf8_second_to_last_byte_guard_against_overlong;
continue :state_loop;
},
0xE1...0xEC, 0xEE...0xEF => {
self.cursor += 1;
self.state = .string_utf8_second_to_last_byte;
continue :state_loop;
},
0xED => {
self.cursor += 1;
self.state = .string_utf8_second_to_last_byte_guard_against_surrogate_half;
continue :state_loop;
},
0xF0 => {
self.cursor += 1;
self.state = .string_utf8_third_to_last_byte_guard_against_overlong;
continue :state_loop;
},
0xF1...0xF3 => {
self.cursor += 1;
self.state = .string_utf8_third_to_last_byte;
continue :state_loop;
},
0xF4 => {
self.cursor += 1;
self.state = .string_utf8_third_to_last_byte_guard_against_too_large;
continue :state_loop;
},
0x80...0xC1, 0xF5...0xFF => return error.SyntaxError, // Invalid UTF-8.
}
}
if (self.is_end_of_input) return error.UnexpectedEndOfInput;
const slice = self.takeValueSlice();
if (slice.len > 0) return Token{ .partial_string = slice };
return error.BufferUnderrun;
},
.string_backslash => {
switch (try self.expectByte()) {
'"', '\\', '/' => {
// Since these characters now represent themselves literally,
// we can simply begin the next plaintext slice here.
self.value_start = self.cursor;
self.cursor += 1;
self.state = .string;
continue :state_loop;
},
'b' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
return Token{ .partial_string_escaped_1 = [_]u8{0x08} };
},
'f' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
return Token{ .partial_string_escaped_1 = [_]u8{0x0c} };
},
'n' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
return Token{ .partial_string_escaped_1 = [_]u8{'\n'} };
},
'r' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
return Token{ .partial_string_escaped_1 = [_]u8{'\r'} };
},
't' => {
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
return Token{ .partial_string_escaped_1 = [_]u8{'\t'} };
},
'u' => {
self.cursor += 1;
self.state = .string_backslash_u;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.string_backslash_u => {
const c = try self.expectByte();
switch (c) {
'0'...'9' => {
self.unicode_code_point = @as(u21, c - '0') << 12;
},
'A'...'F' => {
self.unicode_code_point = @as(u21, c - 'A' + 10) << 12;
},
'a'...'f' => {
self.unicode_code_point = @as(u21, c - 'a' + 10) << 12;
},
else => return error.SyntaxError,
}
self.cursor += 1;
self.state = .string_backslash_u_1;
continue :state_loop;
},
.string_backslash_u_1 => {
const c = try self.expectByte();
switch (c) {
'0'...'9' => {
self.unicode_code_point |= @as(u21, c - '0') << 8;
},
'A'...'F' => {
self.unicode_code_point |= @as(u21, c - 'A' + 10) << 8;
},
'a'...'f' => {
self.unicode_code_point |= @as(u21, c - 'a' + 10) << 8;
},
else => return error.SyntaxError,
}
self.cursor += 1;
self.state = .string_backslash_u_2;
continue :state_loop;
},
.string_backslash_u_2 => {
const c = try self.expectByte();
switch (c) {
'0'...'9' => {
self.unicode_code_point |= @as(u21, c - '0') << 4;
},
'A'...'F' => {
self.unicode_code_point |= @as(u21, c - 'A' + 10) << 4;
},
'a'...'f' => {
self.unicode_code_point |= @as(u21, c - 'a' + 10) << 4;
},
else => return error.SyntaxError,
}
self.cursor += 1;
self.state = .string_backslash_u_3;
continue :state_loop;
},
.string_backslash_u_3 => {
const c = try self.expectByte();
switch (c) {
'0'...'9' => {
self.unicode_code_point |= c - '0';
},
'A'...'F' => {
self.unicode_code_point |= c - 'A' + 10;
},
'a'...'f' => {
self.unicode_code_point |= c - 'a' + 10;
},
else => return error.SyntaxError,
}
self.cursor += 1;
switch (self.unicode_code_point) {
0xD800...0xDBFF => {
// High surrogate half.
self.unicode_code_point = 0x10000 | (self.unicode_code_point << 10);
self.state = .string_surrogate_half;
continue :state_loop;
},
0xDC00...0xDFFF => return error.SyntaxError, // Unexpected low surrogate half.
else => {
// Code point from a single UTF-16 code unit.
self.value_start = self.cursor;
self.state = .string;
return self.partialStringCodepoint();
},
}
},
.string_surrogate_half => {
switch (try self.expectByte()) {
'\\' => {
self.cursor += 1;
self.state = .string_surrogate_half_backslash;
continue :state_loop;
},
else => return error.SyntaxError, // Expected low surrogate half.
}
},
.string_surrogate_half_backslash => {
switch (try self.expectByte()) {
'u' => {
self.cursor += 1;
self.state = .string_surrogate_half_backslash_u;
continue :state_loop;
},
else => return error.SyntaxError, // Expected low surrogate half.
}
},
.string_surrogate_half_backslash_u => {
switch (try self.expectByte()) {
'D', 'd' => {
self.cursor += 1;
self.state = .string_surrogate_half_backslash_u_1;
continue :state_loop;
},
else => return error.SyntaxError, // Expected low surrogate half.
}
},
.string_surrogate_half_backslash_u_1 => {
const c = try self.expectByte();
switch (c) {
'C'...'F' => {
self.cursor += 1;
self.unicode_code_point |= @as(u21, c - 'C') << 8;
self.state = .string_surrogate_half_backslash_u_2;
continue :state_loop;
},
'c'...'f' => {
self.cursor += 1;
self.unicode_code_point |= @as(u21, c - 'c') << 8;
self.state = .string_surrogate_half_backslash_u_2;
continue :state_loop;
},
else => return error.SyntaxError, // Expected low surrogate half.
}
},
.string_surrogate_half_backslash_u_2 => {
const c = try self.expectByte();
switch (c) {
'0'...'9' => {
self.cursor += 1;
self.unicode_code_point |= @as(u21, c - '0') << 4;
self.state = .string_surrogate_half_backslash_u_3;
continue :state_loop;
},
'A'...'F' => {
self.cursor += 1;
self.unicode_code_point |= @as(u21, c - 'A' + 10) << 4;
self.state = .string_surrogate_half_backslash_u_3;
continue :state_loop;
},
'a'...'f' => {
self.cursor += 1;
self.unicode_code_point |= @as(u21, c - 'a' + 10) << 4;
self.state = .string_surrogate_half_backslash_u_3;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.string_surrogate_half_backslash_u_3 => {
const c = try self.expectByte();
switch (c) {
'0'...'9' => {
self.unicode_code_point |= c - '0';
},
'A'...'F' => {
self.unicode_code_point |= c - 'A' + 10;
},
'a'...'f' => {
self.unicode_code_point |= c - 'a' + 10;
},
else => return error.SyntaxError,
}
self.cursor += 1;
self.value_start = self.cursor;
self.state = .string;
return self.partialStringCodepoint();
},
.string_utf8_last_byte => {
switch (try self.expectByte()) {
0x80...0xBF => {
self.cursor += 1;
self.state = .string;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.string_utf8_second_to_last_byte => {
switch (try self.expectByte()) {
0x80...0xBF => {
self.cursor += 1;
self.state = .string_utf8_last_byte;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.string_utf8_second_to_last_byte_guard_against_overlong => {
switch (try self.expectByte()) {
0xA0...0xBF => {
self.cursor += 1;
self.state = .string_utf8_last_byte;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.string_utf8_second_to_last_byte_guard_against_surrogate_half => {
switch (try self.expectByte()) {
0x80...0x9F => {
self.cursor += 1;
self.state = .string_utf8_last_byte;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.string_utf8_third_to_last_byte => {
switch (try self.expectByte()) {
0x80...0xBF => {
self.cursor += 1;
self.state = .string_utf8_second_to_last_byte;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.string_utf8_third_to_last_byte_guard_against_overlong => {
switch (try self.expectByte()) {
0x90...0xBF => {
self.cursor += 1;
self.state = .string_utf8_second_to_last_byte;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.string_utf8_third_to_last_byte_guard_against_too_large => {
switch (try self.expectByte()) {
0x80...0x8F => {
self.cursor += 1;
self.state = .string_utf8_second_to_last_byte;
continue :state_loop;
},
else => return error.SyntaxError, // Invalid UTF-8.
}
},
.literal_t => {
switch (try self.expectByte()) {
'r' => {
self.cursor += 1;
self.state = .literal_tr;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_tr => {
switch (try self.expectByte()) {
'u' => {
self.cursor += 1;
self.state = .literal_tru;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_tru => {
switch (try self.expectByte()) {
'e' => {
self.cursor += 1;
self.state = .post_value;
return .true;
},
else => return error.SyntaxError,
}
},
.literal_f => {
switch (try self.expectByte()) {
'a' => {
self.cursor += 1;
self.state = .literal_fa;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_fa => {
switch (try self.expectByte()) {
'l' => {
self.cursor += 1;
self.state = .literal_fal;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_fal => {
switch (try self.expectByte()) {
's' => {
self.cursor += 1;
self.state = .literal_fals;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_fals => {
switch (try self.expectByte()) {
'e' => {
self.cursor += 1;
self.state = .post_value;
return .false;
},
else => return error.SyntaxError,
}
},
.literal_n => {
switch (try self.expectByte()) {
'u' => {
self.cursor += 1;
self.state = .literal_nu;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_nu => {
switch (try self.expectByte()) {
'l' => {
self.cursor += 1;
self.state = .literal_nul;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.literal_nul => {
switch (try self.expectByte()) {
'l' => {
self.cursor += 1;
self.state = .post_value;
return .null;
},
else => return error.SyntaxError,
}
},
}
unreachable;
}
}
/// Seeks ahead in the input until the first byte of the next token (or the end of the input)
/// determines which type of token will be returned from the next `next*()` call.
/// This function is idempotent, only advancing past commas, colons, and inter-token whitespace.
pub fn peekNextTokenType(self: *@This()) PeekError!TokenType {
state_loop: while (true) {
switch (self.state) {
.value => {
switch (try self.skipWhitespaceExpectByte()) {
'{' => return .object_begin,
'[' => return .array_begin,
'"' => return .string,
'-', '0'...'9' => return .number,
't' => return .true,
'f' => return .false,
'n' => return .null,
else => return error.SyntaxError,
}
},
.post_value => {
if (try self.skipWhitespaceCheckEnd()) return .end_of_document;
const c = self.input[self.cursor];
if (self.string_is_object_key) {
self.string_is_object_key = false;
switch (c) {
':' => {
self.cursor += 1;
self.state = .value;
continue :state_loop;
},
else => return error.SyntaxError,
}
}
switch (c) {
'}' => return .object_end,
']' => return .array_end,
',' => {
switch (self.stack.peek()) {
OBJECT_MODE => {
self.state = .object_post_comma;
},
ARRAY_MODE => {
self.state = .value;
},
}
self.cursor += 1;
continue :state_loop;
},
else => return error.SyntaxError,
}
},
.object_start => {
switch (try self.skipWhitespaceExpectByte()) {
'"' => return .string,
'}' => return .object_end,
else => return error.SyntaxError,
}
},
.object_post_comma => {
switch (try self.skipWhitespaceExpectByte()) {
'"' => return .string,
else => return error.SyntaxError,
}
},
.array_start => {
switch (try self.skipWhitespaceExpectByte()) {
']' => return .array_end,
else => {
self.state = .value;
continue :state_loop;
},
}
},
.number_minus,
.number_leading_zero,
.number_int,
.number_post_dot,
.number_frac,
.number_post_e,
.number_post_e_sign,
.number_exp,
=> return .number,
.string,
.string_backslash,
.string_backslash_u,
.string_backslash_u_1,
.string_backslash_u_2,
.string_backslash_u_3,
.string_surrogate_half,
.string_surrogate_half_backslash,
.string_surrogate_half_backslash_u,
.string_surrogate_half_backslash_u_1,
.string_surrogate_half_backslash_u_2,
.string_surrogate_half_backslash_u_3,
=> return .string,
.string_utf8_last_byte,
.string_utf8_second_to_last_byte,
.string_utf8_second_to_last_byte_guard_against_overlong,
.string_utf8_second_to_last_byte_guard_against_surrogate_half,
.string_utf8_third_to_last_byte,
.string_utf8_third_to_last_byte_guard_against_overlong,
.string_utf8_third_to_last_byte_guard_against_too_large,
=> return .string,
.literal_t,
.literal_tr,
.literal_tru,
=> return .true,
.literal_f,
.literal_fa,
.literal_fal,
.literal_fals,
=> return .false,
.literal_n,
.literal_nu,
.literal_nul,
=> return .null,
}
unreachable;
}
}
const State = enum {
value,
post_value,
object_start,
object_post_comma,
array_start,
number_minus,
number_leading_zero,
number_int,
number_post_dot,
number_frac,
number_post_e,
number_post_e_sign,
number_exp,
string,
string_backslash,
string_backslash_u,
string_backslash_u_1,
string_backslash_u_2,
string_backslash_u_3,
string_surrogate_half,
string_surrogate_half_backslash,
string_surrogate_half_backslash_u,
string_surrogate_half_backslash_u_1,
string_surrogate_half_backslash_u_2,
string_surrogate_half_backslash_u_3,
// From http://unicode.org/mail-arch/unicode-ml/y2003-m02/att-0467/01-The_Algorithm_to_Valide_an_UTF-8_String
string_utf8_last_byte, // State A
string_utf8_second_to_last_byte, // State B
string_utf8_second_to_last_byte_guard_against_overlong, // State C
string_utf8_second_to_last_byte_guard_against_surrogate_half, // State D
string_utf8_third_to_last_byte, // State E
string_utf8_third_to_last_byte_guard_against_overlong, // State F
string_utf8_third_to_last_byte_guard_against_too_large, // State G
literal_t,
literal_tr,
literal_tru,
literal_f,
literal_fa,
literal_fal,
literal_fals,
literal_n,
literal_nu,
literal_nul,
};
fn expectByte(self: *const @This()) !u8 {
if (self.cursor < self.input.len) {
return self.input[self.cursor];
}
// No byte.
if (self.is_end_of_input) return error.UnexpectedEndOfInput;
return error.BufferUnderrun;
}
fn skipWhitespace(self: *@This()) void {
while (self.cursor < self.input.len) : (self.cursor += 1) {
switch (self.input[self.cursor]) {
// Whitespace
' ', '\t', '\r' => continue,
'\n' => {
if (self.diagnostics) |diag| {
diag.line_number += 1;
// This will count the newline itself,
// which means a straight-forward subtraction will give a 1-based column number.
diag.line_start_cursor = self.cursor;
}
continue;
},
else => return,
}
}
}
fn skipWhitespaceExpectByte(self: *@This()) !u8 {
self.skipWhitespace();
return self.expectByte();
}
fn skipWhitespaceCheckEnd(self: *@This()) !bool {
self.skipWhitespace();
if (self.cursor >= self.input.len) {
// End of buffer.
if (self.is_end_of_input) {
// End of everything.
if (self.stackHeight() == 0) {
// We did it!
return true;
}
return error.UnexpectedEndOfInput;
}
return error.BufferUnderrun;
}
if (self.stackHeight() == 0) return error.SyntaxError;
return false;
}
fn takeValueSlice(self: *@This()) []const u8 {
const slice = self.input[self.value_start..self.cursor];
self.value_start = self.cursor;
return slice;
}
fn endOfBufferInNumber(self: *@This(), allow_end: bool) !Token {
const slice = self.takeValueSlice();
if (self.is_end_of_input) {
if (!allow_end) return error.UnexpectedEndOfInput;
self.state = .post_value;
return Token{ .number = slice };
}
if (slice.len == 0) return error.BufferUnderrun;
return Token{ .partial_number = slice };
}
fn partialStringCodepoint(self: *@This()) Token {
const code_point = self.unicode_code_point;
self.unicode_code_point = undefined;
var buf: [4]u8 = undefined;
switch (std.unicode.utf8Encode(code_point, &buf) catch unreachable) {
1 => return Token{ .partial_string_escaped_1 = buf[0..1].* },
2 => return Token{ .partial_string_escaped_2 = buf[0..2].* },
3 => return Token{ .partial_string_escaped_3 = buf[0..3].* },
4 => return Token{ .partial_string_escaped_4 = buf[0..4].* },
else => unreachable,
}
}
};
const OBJECT_MODE = 0;
const ARRAY_MODE = 1;
fn appendSlice(list: *std.ArrayList(u8), buf: []const u8, max_value_len: usize) !void {
const new_len = std.math.add(usize, list.items.len, buf.len) catch return error.ValueTooLong;
if (new_len > max_value_len) return error.ValueTooLong;
try list.appendSlice(buf);
}
/// For the slice you get from a `Token.number` or `Token.allocated_number`,
/// this function returns true if the number doesn't contain any fraction or exponent components.
/// Note, the numeric value encoded by the value may still be an integer, such as `1.0`.
/// This function is meant to give a hint about whether integer parsing or float parsing should be used on the value.
/// This function will not give meaningful results on non-numeric input.
pub fn isNumberFormattedLikeAnInteger(value: []const u8) bool {
return std.mem.indexOfAny(u8, value, ".eE") == null;
}
test {
_ = @import("./scanner_test.zig");
}