Point Cloud Library (PCL) 1.15.0
Loading...
Searching...
No Matches
uniform_sampling.h
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2010-2011, Willow Garage, Inc.
6 *
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * * Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * * Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * * Neither the name of Willow Garage, Inc. nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
33 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 *
36 * $Id$
37 *
38 */
39
40#pragma once
41
42#include <pcl/filters/filter_indices.h>
43
44#include <unordered_map>
45
46namespace pcl
47{
48 /** \brief @b UniformSampling assembles a local 3D grid over a given PointCloud, and downsamples + filters the data.
49 *
50 * The @b UniformSampling class creates a *3D voxel grid* (think about a voxel
51 * grid as a set of tiny 3D boxes in space) over the input point cloud data.
52 * Then, in each *voxel* (i.e., 3D box), all the points present will be
53 * approximated (i.e., *downsampled*) with the closest point to the center of the voxel.
54 *
55 * \sa VoxelGrid
56 * \author Radu Bogdan Rusu
57 * \ingroup filters
58 */
59 template <typename PointT>
60 class UniformSampling: public FilterIndices<PointT>
61 {
62 using PointCloud = typename FilterIndices<PointT>::PointCloud;
63
65
72
73 public:
74 using Ptr = shared_ptr<UniformSampling<PointT> >;
75 using ConstPtr = shared_ptr<const UniformSampling<PointT> >;
76
78
79 /** \brief Empty constructor. */
80 UniformSampling (bool extract_removed_indices = false) :
81 FilterIndices<PointT>(extract_removed_indices),
82 leaves_ (),
83 leaf_size_ (Eigen::Vector4f::Zero ()),
84 inverse_leaf_size_ (Eigen::Vector4f::Zero ()),
85 min_b_ (Eigen::Vector4i::Zero ()),
86 max_b_ (Eigen::Vector4i::Zero ()),
87 div_b_ (Eigen::Vector4i::Zero ()),
88 divb_mul_ (Eigen::Vector4i::Zero ())
89 {
90 filter_name_ = "UniformSampling";
91 }
92
93 /** \brief Destructor. */
94 ~UniformSampling () override
95 {
96 leaves_.clear();
97 }
98
99 /** \brief Set the 3D grid leaf size.
100 * \param radius the 3D grid leaf size
101 */
102 virtual inline void
103 setRadiusSearch (double radius)
104 {
105 leaf_size_[0] = leaf_size_[1] = leaf_size_[2] = static_cast<float> (radius);
106 // Avoid division errors
107 if (leaf_size_[3] == 0)
108 leaf_size_[3] = 1;
109 // Use multiplications instead of divisions
110 inverse_leaf_size_ = Eigen::Array4f::Ones () / leaf_size_.array ();
111 search_radius_ = radius;
112 }
113
114 /** \brief Set the minimum number of points required for a voxel to be used.
115 * \param[in] min_points_per_voxel the minimum number of points for required for a voxel to be used
116 */
117 inline void
118 setMinimumPointsNumberPerVoxel (unsigned int min_points_per_voxel) { min_points_per_voxel_ = min_points_per_voxel; }
119
120 /** \brief Return the minimum number of points required for a voxel to be used.
121 */
122 inline unsigned int
124
125
126 protected:
127 /** \brief Simple structure to hold an nD centroid and the number of points in a leaf. */
128 struct Leaf
129 {
130 Leaf () = default;
131 int idx{-1};
132 unsigned int count{0};
133 };
134
135 /** \brief The 3D grid leaves. */
136 std::unordered_map<std::size_t, Leaf> leaves_;
137
138 /** \brief The size of a leaf. */
139 Eigen::Vector4f leaf_size_;
140
141 /** \brief Internal leaf sizes stored as 1/leaf_size_ for efficiency reasons. */
142 Eigen::Array4f inverse_leaf_size_;
143
144 /** \brief The minimum and maximum bin coordinates, the number of divisions, and the division multiplier. */
145 Eigen::Vector4i min_b_, max_b_, div_b_, divb_mul_;
146
147 /** \brief The nearest neighbors search radius for each point. */
148 double search_radius_{0.0};
149
150 /** \brief Minimum number of points per voxel. */
151 unsigned int min_points_per_voxel_{0};
152
153 /** \brief Filtered results are indexed by an indices array.
154 * \param[out] indices The resultant indices.
155 */
156 void
157 applyFilter (Indices &indices) override;
158 };
159}
160
161#ifdef PCL_NO_PRECOMPILE
162#include <pcl/filters/impl/uniform_sampling.hpp>
163#endif
Filter represents the base filter class.
Definition filter.h:81
bool extract_removed_indices_
Set to true if we want to return the indices of the removed points.
Definition filter.h:161
const std::string & getClassName() const
Get a string representation of the name of this class.
Definition filter.h:174
std::string filter_name_
The filter name.
Definition filter.h:158
IndicesPtr removed_indices_
Indices of the points that are removed.
Definition filter.h:155
FilterIndices represents the base class for filters that are about binary point removal.
bool negative_
False = normal filter behavior (default), true = inverted behavior.
PointCloudConstPtr input_
The input point cloud dataset.
Definition pcl_base.h:147
IndicesPtr indices_
A pointer to the vector of point indices to use.
Definition pcl_base.h:150
PointCloud represents the base class in PCL for storing collections of 3D points.
UniformSampling assembles a local 3D grid over a given PointCloud, and downsamples + filters the data...
Eigen::Vector4i min_b_
The minimum and maximum bin coordinates, the number of divisions, and the division multiplier.
shared_ptr< const UniformSampling< PointT > > ConstPtr
~UniformSampling() override
Destructor.
void applyFilter(Indices &indices) override
Filtered results are indexed by an indices array.
Eigen::Vector4f leaf_size_
The size of a leaf.
Eigen::Array4f inverse_leaf_size_
Internal leaf sizes stored as 1/leaf_size_ for efficiency reasons.
PCL_MAKE_ALIGNED_OPERATOR_NEW UniformSampling(bool extract_removed_indices=false)
Empty constructor.
double search_radius_
The nearest neighbors search radius for each point.
unsigned int min_points_per_voxel_
Minimum number of points per voxel.
unsigned int getMinimumPointsNumberPerVoxel() const
Return the minimum number of points required for a voxel to be used.
void setMinimumPointsNumberPerVoxel(unsigned int min_points_per_voxel)
Set the minimum number of points required for a voxel to be used.
std::unordered_map< std::size_t, Leaf > leaves_
The 3D grid leaves.
Eigen::Vector4i divb_mul_
virtual void setRadiusSearch(double radius)
Set the 3D grid leaf size.
shared_ptr< UniformSampling< PointT > > Ptr
#define PCL_MAKE_ALIGNED_OPERATOR_NEW
Macro to signal a class requires a custom allocator.
Definition memory.h:86
Definition bfgs.h:10
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
A point structure representing Euclidean xyz coordinates, and the RGB color.
Simple structure to hold an nD centroid and the number of points in a leaf.