Point Cloud Library (PCL) 1.15.0
Loading...
Searching...
No Matches
sac_model_cone.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2009-2012, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 */
38
39#ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
40#define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
41
42#include <pcl/sample_consensus/sac_model_cone.h>
43#include <pcl/common/common.h> // for getAngle3D
44#include <pcl/common/concatenate.h>
45
46//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
47template <typename PointT, typename PointNT> bool
49{
50 if (samples.size () != sample_size_)
51 {
52 PCL_ERROR ("[pcl::SampleConsensusModelCone::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
53 return (false);
54 }
55 return (true);
56}
57
58//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
59template <typename PointT, typename PointNT> bool
61 const Indices &samples, Eigen::VectorXf &model_coefficients) const
62{
63 // Make sure that the samples are valid
64 if (!isSampleGood (samples))
65 {
66 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Invalid set of samples given\n");
67 return (false);
68 }
69
70 if (!normals_)
71 {
72 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] No input dataset containing normals was given! Use setInputNormals\n");
73 return (false);
74 }
75
76 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
77 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
78 Eigen::Vector4f p3 ((*input_)[samples[2]].x, (*input_)[samples[2]].y, (*input_)[samples[2]].z, 0.0f);
79
80 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
81 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
82 Eigen::Vector4f n3 ((*normals_)[samples[2]].normal[0], (*normals_)[samples[2]].normal[1], (*normals_)[samples[2]].normal[2], 0.0f);
83
84 //calculate apex (intersection of the three planes defined by points and belonging normals
85 Eigen::Vector4f ortho12 = n1.cross3(n2);
86 Eigen::Vector4f ortho23 = n2.cross3(n3);
87 Eigen::Vector4f ortho31 = n3.cross3(n1);
88
89 float denominator = n1.dot(ortho23);
90 if (std::abs(denominator) < Eigen::NumTraits<float>::dummy_precision ())
91 {
92 PCL_ERROR ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Impossible to compute stable model with these points.\n");
93 return (false);
94 }
95
96 float d1 = p1.dot (n1);
97 float d2 = p2.dot (n2);
98 float d3 = p3.dot (n3);
99
100 Eigen::Vector4f apex = (d1 * ortho23 + d2 * ortho31 + d3 * ortho12) / denominator;
101
102 //compute axis (normal of plane defined by: { apex+(p1-apex)/(||p1-apex||), apex+(p2-apex)/(||p2-apex||), apex+(p3-apex)/(||p3-apex||)}
103 Eigen::Vector4f ap1 = p1 - apex;
104 Eigen::Vector4f ap2 = p2 - apex;
105 Eigen::Vector4f ap3 = p3 - apex;
106
107 Eigen::Vector4f np1 = apex + (ap1/ap1.norm ());
108 Eigen::Vector4f np2 = apex + (ap2/ap2.norm ());
109 Eigen::Vector4f np3 = apex + (ap3/ap3.norm ());
110
111 Eigen::Vector4f np1np2 = np2 - np1;
112 Eigen::Vector4f np1np3 = np3 - np1;
113
114 Eigen::Vector4f axis_dir = np1np2.cross3 (np1np3);
115 axis_dir.normalize ();
116
117 // normalize the vector (apex->p) for opening angle calculation
118 ap1.normalize ();
119 ap2.normalize ();
120 ap3.normalize ();
121
122 //compute opening angle
123 float opening_angle = ( std::acos (ap1.dot (axis_dir)) + std::acos (ap2.dot (axis_dir)) + std::acos (ap3.dot (axis_dir)) ) / 3.0f;
124
125 model_coefficients.resize (model_size_);
126 // model_coefficients.template head<3> () = line_pt.template head<3> ();
127 model_coefficients[0] = apex[0];
128 model_coefficients[1] = apex[1];
129 model_coefficients[2] = apex[2];
130 // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
131 model_coefficients[3] = axis_dir[0];
132 model_coefficients[4] = axis_dir[1];
133 model_coefficients[5] = axis_dir[2];
134 // cone radius
135 model_coefficients[6] = opening_angle;
136
137 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
138 return (false);
139 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
140 return (false);
141
142 PCL_DEBUG ("[pcl::SampleConsensusModelCone::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
143 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
144 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
145 return (true);
146}
147
148//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
149template <typename PointT, typename PointNT> void
151 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
152{
153 // Check if the model is valid given the user constraints
154 if (!isModelValid (model_coefficients))
155 {
156 distances.clear ();
157 return;
158 }
159
160 distances.resize (indices_->size ());
161
162 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
163 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
164 const float sin_opening_angle = std::sin (model_coefficients[6]),
165 cos_opening_angle = std::cos (model_coefficients[6]),
166 tan_opening_angle = std::tan (model_coefficients[6]);
167
168 float apexdotdir = apex.dot (axis_dir);
169 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
170 // Iterate through the 3d points and calculate the distances from them to the cone
171 for (std::size_t i = 0; i < indices_->size (); ++i)
172 {
173 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
174
175 // Calculate the point's projection on the cone axis
176 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
177 Eigen::Vector4f pt_proj = apex + k * axis_dir;
178
179 // Calculate the actual radius of the cone at the level of the projected point
180 Eigen::Vector4f height = apex - pt_proj;
181 float actual_cone_radius = tan_opening_angle * height.norm ();
182
183 // Approximate the distance from the point to the cone as the difference between
184 // dist(point,cone_axis) and actual cone radius
185 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
186
187 // Calculate the direction of the point from center
188 Eigen::Vector4f dir = pt - pt_proj;
189 dir.normalize ();
190
191 // Calculate the cones perfect normals
192 height.normalize ();
193 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * dir;
194
195 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
196 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
197 double d_normal = std::abs (getAngle3D (n, cone_normal));
198 d_normal = (std::min) (d_normal, M_PI - d_normal);
199
200 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
201 }
202}
203
204//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
205template <typename PointT, typename PointNT> void
207 const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
208{
209 // Check if the model is valid given the user constraints
210 if (!isModelValid (model_coefficients))
211 {
212 inliers.clear ();
213 return;
214 }
215
216 inliers.clear ();
217 error_sqr_dists_.clear ();
218 inliers.reserve (indices_->size ());
219 error_sqr_dists_.reserve (indices_->size ());
220
221 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
222 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
223 const float sin_opening_angle = std::sin (model_coefficients[6]),
224 cos_opening_angle = std::cos (model_coefficients[6]),
225 tan_opening_angle = std::tan (model_coefficients[6]);
226
227 float apexdotdir = apex.dot (axis_dir);
228 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
229 // Iterate through the 3d points and calculate the distances from them to the cone
230 for (std::size_t i = 0; i < indices_->size (); ++i)
231 {
232 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
233
234 // Calculate the point's projection on the cone axis
235 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
236 Eigen::Vector4f pt_proj = apex + k * axis_dir;
237
238 // Calculate the actual radius of the cone at the level of the projected point
239 Eigen::Vector4f height = apex - pt_proj;
240 double actual_cone_radius = tan_opening_angle * height.norm ();
241
242 // Approximate the distance from the point to the cone as the difference between
243 // dist(point,cone_axis) and actual cone radius
244 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
245 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
246 continue;
247
248 // Calculate the direction of the point from center
249 Eigen::Vector4f pp_pt_dir = pt - pt_proj;
250 pp_pt_dir.normalize ();
251
252 // Calculate the cones perfect normals
253 height.normalize ();
254 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * pp_pt_dir;
255
256 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
257 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
258 double d_normal = std::abs (getAngle3D (n, cone_normal));
259 d_normal = (std::min) (d_normal, M_PI - d_normal);
260
261 double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
262
263 if (distance < threshold)
264 {
265 // Returns the indices of the points whose distances are smaller than the threshold
266 inliers.push_back ((*indices_)[i]);
267 error_sqr_dists_.push_back (distance);
268 }
269 }
270}
271
272//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
273template <typename PointT, typename PointNT> std::size_t
275 const Eigen::VectorXf &model_coefficients, const double threshold) const
276{
277
278 // Check if the model is valid given the user constraints
279 if (!isModelValid (model_coefficients))
280 return (0);
281
282 std::size_t nr_p = 0;
283
284 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
285 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
286 const float sin_opening_angle = std::sin (model_coefficients[6]),
287 cos_opening_angle = std::cos (model_coefficients[6]),
288 tan_opening_angle = std::tan (model_coefficients[6]);
289
290 float apexdotdir = apex.dot (axis_dir);
291 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
292 // Iterate through the 3d points and calculate the distances from them to the cone
293 for (std::size_t i = 0; i < indices_->size (); ++i)
294 {
295 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
296
297 // Calculate the point's projection on the cone axis
298 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
299 Eigen::Vector4f pt_proj = apex + k * axis_dir;
300
301 // Calculate the actual radius of the cone at the level of the projected point
302 Eigen::Vector4f height = apex - pt_proj;
303 double actual_cone_radius = tan_opening_angle * height.norm ();
304
305 // Approximate the distance from the point to the cone as the difference between
306 // dist(point,cone_axis) and actual cone radius
307 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToAxisDistance (pt, model_coefficients) - actual_cone_radius);
308 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
309 continue;
310
311 // Calculate the direction of the point from center
312 Eigen::Vector4f pp_pt_dir = pt - pt_proj;
313 pp_pt_dir.normalize ();
314
315 // Calculate the cones perfect normals
316 height.normalize ();
317 Eigen::Vector4f cone_normal = sin_opening_angle * height + cos_opening_angle * pp_pt_dir;
318
319 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
320 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
321 double d_normal = std::abs (getAngle3D (n, cone_normal));
322 d_normal = (std::min) (d_normal, M_PI - d_normal);
323
324 if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
325 nr_p++;
326 }
327 return (nr_p);
328}
329
330//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
331template <typename PointT, typename PointNT> void
333 const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
334{
335 optimized_coefficients = model_coefficients;
336
337 // Needs a set of valid model coefficients
338 if (!isModelValid (model_coefficients))
339 {
340 PCL_ERROR ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] Given model is invalid!\n");
341 return;
342 }
343
344 // Need more than the minimum sample size to make a difference
345 if (inliers.size () <= sample_size_)
346 {
347 PCL_ERROR ("[pcl::SampleConsensusModelCone:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
348 return;
349 }
350
351 Eigen::ArrayXf pts_x(inliers.size());
352 Eigen::ArrayXf pts_y(inliers.size());
353 Eigen::ArrayXf pts_z(inliers.size());
354 std::size_t pos = 0;
355 for(const auto& index : inliers) {
356 pts_x[pos] = (*input_)[index].x;
357 pts_y[pos] = (*input_)[index].y;
358 pts_z[pos] = (*input_)[index].z;
359 ++pos;
360 }
361 pcl::internal::optimizeModelCoefficientsCone(optimized_coefficients, pts_x, pts_y, pts_z);
362
363 PCL_DEBUG ("[pcl::SampleConsensusModelCone::optimizeModelCoefficients] Initial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
364 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
365 model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
366
367 Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
368 line_dir.normalize ();
369 optimized_coefficients[3] = line_dir[0];
370 optimized_coefficients[4] = line_dir[1];
371 optimized_coefficients[5] = line_dir[2];
372}
373
374//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
375template <typename PointT, typename PointNT> void
377 const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
378{
379 // Needs a valid set of model coefficients
380 if (!isModelValid (model_coefficients))
381 {
382 PCL_ERROR ("[pcl::SampleConsensusModelCone::projectPoints] Given model is invalid!\n");
383 return;
384 }
385
386 projected_points.header = input_->header;
387 projected_points.is_dense = input_->is_dense;
388
389 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
390 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
391 const float tan_opening_angle = std::tan (model_coefficients[6]);
392
393 float apexdotdir = apex.dot (axis_dir);
394 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
395
396 // Copy all the data fields from the input cloud to the projected one?
397 if (copy_data_fields)
398 {
399 // Allocate enough space and copy the basics
400 projected_points.resize (input_->size ());
401 projected_points.width = input_->width;
402 projected_points.height = input_->height;
403
404 using FieldList = typename pcl::traits::fieldList<PointT>::type;
405 // Iterate over each point
406 for (std::size_t i = 0; i < projected_points.size (); ++i)
407 // Iterate over each dimension
408 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
409
410 // Iterate through the 3d points and calculate the distances from them to the cone
411 for (const auto &inlier : inliers)
412 {
413 Eigen::Vector4f pt ((*input_)[inlier].x,
414 (*input_)[inlier].y,
415 (*input_)[inlier].z,
416 1);
417
418 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
419
420 pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
421 pp.matrix () = apex + k * axis_dir;
422
423 Eigen::Vector4f dir = pt - pp;
424 dir.normalize ();
425
426 // Calculate the actual radius of the cone at the level of the projected point
427 Eigen::Vector4f height = apex - pp;
428 float actual_cone_radius = tan_opening_angle * height.norm ();
429
430 // Calculate the projection of the point onto the cone
431 pp += dir * actual_cone_radius;
432 }
433 }
434 else
435 {
436 // Allocate enough space and copy the basics
437 projected_points.resize (inliers.size ());
438 projected_points.width = inliers.size ();
439 projected_points.height = 1;
440
441 using FieldList = typename pcl::traits::fieldList<PointT>::type;
442 // Iterate over each point
443 for (std::size_t i = 0; i < inliers.size (); ++i)
444 // Iterate over each dimension
445 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
446
447 // Iterate through the 3d points and calculate the distances from them to the cone
448 for (std::size_t i = 0; i < inliers.size (); ++i)
449 {
450 pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
451 pcl::Vector4fMapConst pt = (*input_)[inliers[i]].getVector4fMap ();
452
453 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
454 // Calculate the projection of the point on the line
455 pp.matrix () = apex + k * axis_dir;
456
457 Eigen::Vector4f dir = pt - pp;
458 dir.normalize ();
459
460 // Calculate the actual radius of the cone at the level of the projected point
461 Eigen::Vector4f height = apex - pp;
462 float actual_cone_radius = tan_opening_angle * height.norm ();
463
464 // Calculate the projection of the point onto the cone
465 pp += dir * actual_cone_radius;
466 }
467 }
468}
469
470//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
471template <typename PointT, typename PointNT> bool
473 const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
474{
475 // Needs a valid model coefficients
476 if (!isModelValid (model_coefficients))
477 {
478 PCL_ERROR ("[pcl::SampleConsensusModelCone::doSamplesVerifyModel] Given model is invalid!\n");
479 return (false);
480 }
481
482 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
483 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
484 const float tan_opening_angle = std::tan (model_coefficients[6]);
485
486 float apexdotdir = apex.dot (axis_dir);
487 float dirdotdir = 1.0f / axis_dir.dot (axis_dir);
488
489 // Iterate through the 3d points and calculate the distances from them to the cone
490 for (const auto &index : indices)
491 {
492 Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
493
494 // Calculate the point's projection on the cone axis
495 float k = (pt.dot (axis_dir) - apexdotdir) * dirdotdir;
496 Eigen::Vector4f pt_proj = apex + k * axis_dir;
497 Eigen::Vector4f dir = pt - pt_proj;
498 dir.normalize ();
499
500 // Calculate the actual radius of the cone at the level of the projected point
501 Eigen::Vector4f height = apex - pt_proj;
502 double actual_cone_radius = tan_opening_angle * height.norm ();
503
504 // Approximate the distance from the point to the cone as the difference between
505 // dist(point,cone_axis) and actual cone radius
506 if (std::abs (static_cast<double>(pointToAxisDistance (pt, model_coefficients) - actual_cone_radius)) > threshold)
507 return (false);
508 }
509
510 return (true);
511}
512
513//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
514template <typename PointT, typename PointNT> double
516 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
517{
518 Eigen::Vector4f apex (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
519 Eigen::Vector4f axis_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
520 return sqrt(pcl::sqrPointToLineDistance (pt, apex, axis_dir));
521}
522
523//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
524template <typename PointT, typename PointNT> bool
525pcl::SampleConsensusModelCone<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
526{
527 if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
528 return (false);
529
530 // Check against template, if given
531 if (eps_angle_ > 0.0)
532 {
533 // Obtain the cone direction
534 const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
535
536 double angle_diff = std::abs (getAngle3D (axis_, coeff));
537 angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
538 // Check whether the current cone model satisfies our angle threshold criterion with respect to the given axis
539 if (angle_diff > eps_angle_)
540 {
541 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] Angle between cone direction and given axis is too large.\n");
542 return (false);
543 }
544 }
545
546 if (model_coefficients[6] != -std::numeric_limits<double>::max() && model_coefficients[6] < min_angle_)
547 {
548 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] The opening angle is too small: should be larger than %g, but is %g.\n",
549 min_angle_, model_coefficients[6]);
550 return (false);
551 }
552 if (model_coefficients[6] != std::numeric_limits<double>::max() && model_coefficients[6] > max_angle_)
553 {
554 PCL_DEBUG ("[pcl::SampleConsensusModelCone::isModelValid] The opening angle is too big: should be smaller than %g, but is %g.\n",
555 max_angle_, model_coefficients[6]);
556 return (false);
557 }
558
559 return (true);
560}
561
562#define PCL_INSTANTIATE_SampleConsensusModelCone(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCone<PointT, PointNT>;
563
564#endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CONE_H_
565
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cone coefficients using the given inlier set and return them to the user.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cone model.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cone model.
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cone model, compute the model coefficients fro...
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
double pointToAxisDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cone model coefficients.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
SampleConsensusModel represents the base model class.
Definition sac_model.h:71
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
PCL_EXPORTS int optimizeModelCoefficientsCone(Eigen::VectorXf &coeff, const Eigen::ArrayXf &pts_x, const Eigen::ArrayXf &pts_y, const Eigen::ArrayXf &pts_z)
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
#define M_PI
Definition pcl_macros.h:203