dune-istl 2.10
Loading...
Searching...
No Matches
Sparse Matrix and Vector classes

Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations. More...

Collaboration diagram for Sparse Matrix and Vector classes:

Topics

 Block Recursive Iterative Kernels
 
 IO for matrices and vectors.
 Provides methods for reading and writing matrices and vectors in various formats.
 
 DenseMatVec
 

Files

file  matrixmatrix.hh
 provides functions for sparse matrix matrix multiplication.
 
file  matrixutils.hh
 Some handy generic functions for ISTL matrices.
 

Classes

struct  Dune::MatrixDimension< M >
 
struct  Dune::CompressionStatistics< size_type >
 Statistics about compression achieved in implicit mode. More...
 
class  Dune::ImplicitMatrixBuilder< M_ >
 A wrapper for uniform access to the BCRSMatrix during and after the build stage in implicit build mode. More...
 
class  Dune::BCRSMatrix< B, A >
 A sparse block matrix with compressed row storage. More...
 
struct  Dune::FieldTraits< BCRSMatrix< B, A > >
 
class  Dune::BDMatrix< B, A >
 A block-diagonal matrix. More...
 
struct  Dune::FieldTraits< BDMatrix< B, A > >
 
class  Dune::BTDMatrix< B, A >
 A block-tridiagonal matrix. More...
 
struct  Dune::FieldTraits< BTDMatrix< B, A > >
 
class  Dune::BlockVector< B, A >
 A vector of blocks with memory management. More...
 
class  Dune::Matrix< T, A >
 A generic dynamic dense matrix. More...
 
struct  Dune::FieldTraits< Matrix< T, A > >
 
struct  Dune::MatMultMatResult< M1, M2 >
 Helper TMP to get the result type of a sparse matrix matrix multiplication ( $C=A*B$) More...
 
struct  Dune::MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >
 
struct  Dune::MatMultMatResult< BCRSMatrix< FieldMatrix< T, n, k >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >
 
struct  Dune::TransposedMatMultMatResult< M1, M2 >
 Helper TMP to get the result type of a sparse matrix matrix multiplication ( $C=A*B$) More...
 
struct  Dune::TransposedMatMultMatResult< FieldMatrix< T, k, n >, FieldMatrix< T, k, m > >
 
struct  Dune::TransposedMatMultMatResult< BCRSMatrix< FieldMatrix< T, k, n >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >
 
struct  Dune::CheckIfDiagonalPresent< Matrix, blocklevel, l >
 Check whether the a matrix has diagonal values on blocklevel recursion levels. More...
 
struct  Dune::CheckIfDiagonalPresent< Matrix, 0, l >
 
class  Dune::MultiTypeBlockMatrix< FirstRow, Args >
 A Matrix class to support different block types. More...
 
struct  Dune::CheckIfDiagonalPresent< MultiTypeBlockMatrix< T1, Args... >, blocklevel, l >
 
class  Dune::MultiTypeBlockVector< Args >
 A Vector class to support different block types. More...
 
struct  std::tuple_element< i, Dune::MultiTypeBlockVector< Args... > >
 Make std::tuple_element work for MultiTypeBlockVector. More...
 
struct  std::tuple_size< Dune::MultiTypeBlockVector< Args... > >
 Make std::tuple_size work for MultiTypeBlockVector. More...
 
class  Dune::VariableBlockVector< B, A >
 A Vector of blocks with different blocksizes. More...
 

Typedefs

typedef BCRSMatrix< FieldMatrix< T, n, m >, A >::CreateIterator Dune::SparsityPatternInitializer< T, A, n, m >::CreateIterator
 
typedef BCRSMatrix< FieldMatrix< T, n, m >, A >::size_type Dune::SparsityPatternInitializer< T, A, n, m >::size_type
 
typedef Dune::BCRSMatrix< FieldMatrix< T, n, m >, TA > Dune::MatrixInitializer< transpose, T, TA, n, m >::Matrix
 
typedef Matrix::CreateIterator Dune::MatrixInitializer< transpose, T, TA, n, m >::CreateIterator
 
typedef Matrix::size_type Dune::MatrixInitializer< transpose, T, TA, n, m >::size_type
 
typedef Dune::BCRSMatrix< Dune::FieldMatrix< T, n, m >, TA > Dune::MatrixInitializer< 1, T, TA, n, m >::Matrix
 
typedef Matrix::CreateIterator Dune::MatrixInitializer< 1, T, TA, n, m >::CreateIterator
 
typedef Matrix::size_type Dune::MatrixInitializer< 1, T, TA, n, m >::size_type
 
typedef BCRSMatrix< FieldMatrix< T, n, m >, A > Dune::EntryAccumulatorFather< T, A, n, m >::Matrix
 
typedef Matrix::RowIterator Dune::EntryAccumulatorFather< T, A, n, m >::Row
 
typedef Matrix::ColIterator Dune::EntryAccumulatorFather< T, A, n, m >::Col
 
typedef BCRSMatrix< FieldMatrix< T, n, m >, A > Dune::EntryAccumulator< T, A, n, m, transpose >::Matrix
 
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, transpose >::size_type
 
typedef BCRSMatrix< FieldMatrix< T, n, m >, A > Dune::EntryAccumulator< T, A, n, m, 0 >::Matrix
 
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 0 >::size_type
 
typedef BCRSMatrix< FieldMatrix< T, n, m >, A > Dune::EntryAccumulator< T, A, n, m, 1 >::Matrix
 
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 1 >::size_type
 
typedef BCRSMatrix< FieldMatrix< T, n, m >, A > Dune::EntryAccumulator< T, A, n, m, 2 >::Matrix
 
typedef Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 2 >::size_type
 
typedef FieldMatrix< T, n, m > Dune::MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type
 
typedef BCRSMatrix< typename MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type, std::allocator< typename MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type > > Dune::MatMultMatResult< BCRSMatrix< FieldMatrix< T, n, k >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >::type
 
typedef FieldMatrix< T, n, m > Dune::TransposedMatMultMatResult< FieldMatrix< T, k, n >, FieldMatrix< T, k, m > >::type
 
typedef BCRSMatrix< typename MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type, std::allocator< typename MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type > > Dune::TransposedMatMultMatResult< BCRSMatrix< FieldMatrix< T, k, n >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >::type
 
using Dune::FieldTraits< MultiTypeBlockVector< Args... > >::field_type = typename MultiTypeBlockVector<Args...>::field_type
 
using Dune::FieldTraits< MultiTypeBlockVector< Args... > >::real_type = typename MultiTypeBlockVector<Args...>::real_type
 
using Dune::MultiTypeBlockVector< Args >::size_type = std::size_t
 Type used for vector sizes.
 
typedef MultiTypeBlockVector< Args... > Dune::MultiTypeBlockVector< Args >::type
 
using Dune::MultiTypeBlockVector< Args >::field_type = Std::detected_t<std::common_type_t, typename FieldTraits< std::decay_t<Args> >::field_type...>
 The type used for scalars.
 
using Dune::MultiTypeBlockVector< Args >::real_type = Std::detected_t<std::common_type_t, typename FieldTraits< std::decay_t<Args> >::real_type...>
 The type used for real values.
 
using std::tuple_element< i, Dune::MultiTypeBlockVector< Args... > >::type = typename std::tuple_element<i, std::tuple<Args...> >::type
 

Enumerations

enum  { Dune::SparsityPatternInitializer< T, A, n, m >::do_break =true }
 
enum  { Dune::MatrixInitializer< transpose, T, TA, n, m >::do_break =true }
 
enum  { Dune::MatrixInitializer< 1, T, TA, n, m >::do_break =false }
 
enum  { Dune::EntryAccumulatorFather< T, A, n, m >::do_break =false }
 

Functions

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultTransposeMat (BCRSMatrix< FieldMatrix< T, n, k >, A > &res, const BCRSMatrix< FieldMatrix< T, n, m >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of a sparse matrix with a transposed sparse matrices ( $C=A*B^T$).
 
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultMat (BCRSMatrix< FieldMatrix< T, n, m >, A > &res, const BCRSMatrix< FieldMatrix< T, n, k >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of two sparse matrices ( $C=A*B$).
 
template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::transposeMatMultMat (BCRSMatrix< FieldMatrix< T, n, m >, A > &res, const BCRSMatrix< FieldMatrix< T, k, n >, A1 > &mat, const BCRSMatrix< FieldMatrix< T, k, m >, A2 > &matt, bool tryHard=false)
 Calculate product of a transposed sparse matrix with another sparse matrices ( $C=A^T*B$).
 
template<class M >
auto Dune::countNonZeros (const M &, typename std::enable_if_t< Dune::IsNumber< M >::value > *sfinae=nullptr)
 Get the number of nonzero fields in the matrix.
 
template<class M >
auto Dune::countNonZeros (const M &matrix, typename std::enable_if_t<!Dune::IsNumber< M >::value > *sfinae=nullptr)
 
static constexpr size_type Dune::MultiTypeBlockVector< Args >::size ()
 Return the number of non-zero vector entries.
 
static constexpr size_type Dune::MultiTypeBlockVector< Args >::N ()
 Number of elements.
 
size_type Dune::MultiTypeBlockVector< Args >::dim () const
 Number of scalar elements.
 
template<size_type index>
std::tuple_element< index, TupleType >::typeDune::MultiTypeBlockVector< Args >::operator[] (const std::integral_constant< size_type, index > indexVariable)
 Random-access operator.
 
template<size_type index>
const std::tuple_element< index, TupleType >::typeDune::MultiTypeBlockVector< Args >::operator[] (const std::integral_constant< size_type, index > indexVariable) const
 Const random-access operator.
 
template<typename T >
void Dune::MultiTypeBlockVector< Args >::operator= (const T &newval)
 Assignment operator.
 
void Dune::MultiTypeBlockVector< Args >::operator+= (const type &newv)
 
void Dune::MultiTypeBlockVector< Args >::operator-= (const type &newv)
 
template<class T , std::enable_if_t< IsNumber< T >::value, int > = 0>
void Dune::MultiTypeBlockVector< Args >::operator*= (const T &w)
 Multiplication with a scalar.
 
template<class T , std::enable_if_t< IsNumber< T >::value, int > = 0>
void Dune::MultiTypeBlockVector< Args >::operator/= (const T &w)
 Division by a scalar.
 
field_type Dune::MultiTypeBlockVector< Args >::operator* (const type &newv) const
 
field_type Dune::MultiTypeBlockVector< Args >::dot (const type &newv) const
 
auto Dune::MultiTypeBlockVector< Args >::one_norm () const
 Compute the 1-norm.
 
auto Dune::MultiTypeBlockVector< Args >::one_norm_real () const
 Compute the simplified 1-norm (uses 1-norm also for complex values)
 
real_type Dune::MultiTypeBlockVector< Args >::two_norm2 () const
 Compute the squared Euclidean norm.
 
real_type Dune::MultiTypeBlockVector< Args >::two_norm () const
 Compute the Euclidean norm.
 
real_type Dune::MultiTypeBlockVector< Args >::infinity_norm () const
 Compute the maximum norm.
 
real_type Dune::MultiTypeBlockVector< Args >::infinity_norm_real () const
 Compute the simplified maximum norm (uses 1-norm for complex values)
 
template<typename Ta >
void Dune::MultiTypeBlockVector< Args >::axpy (const Ta &a, const type &y)
 Axpy operation on this vector (*this += a * y)
 
template<typename... Args>
std::ostream & Dune::operator<< (std::ostream &s, const MultiTypeBlockVector< Args... > &v)
 Send MultiTypeBlockVector to an outstream.
 

Variables

Matrix &   mat 
 
Col   col 
 

Detailed Description

Matrix and Vector classes that support a block recursive structure capable of representing the natural structure from Finite Element discretisations.

The interface of our matrices is designed according to what they represent from a mathematical point of view. The vector classes are representations of vector spaces:

The matrix classes represent linear maps $A: V \mapsto W$ from vector space $V$ to vector space $W$ the recursive block structure of the matrix rows and columns immediately follows from the recursive block structure of the vectors representing the domain and range of the mapping, respectively:

Typedef Documentation

◆ Col

template<class T , class A , int n, int m>
Matrix::ColIterator Dune::EntryAccumulatorFather< T, A, n, m >::Col

◆ CreateIterator [1/3]

template<int transpose, class T , class TA , int n, int m>
Matrix::CreateIterator Dune::MatrixInitializer< transpose, T, TA, n, m >::CreateIterator

◆ CreateIterator [2/3]

template<class T , class TA , int n, int m>
Matrix::CreateIterator Dune::MatrixInitializer< 1, T, TA, n, m >::CreateIterator

◆ CreateIterator [3/3]

template<class T , class A , int n, int m>
BCRSMatrix<FieldMatrix<T,n,m>,A>::CreateIterator Dune::SparsityPatternInitializer< T, A, n, m >::CreateIterator

◆ field_type [1/2]

template<typename... Args>
using Dune::FieldTraits< MultiTypeBlockVector< Args... > >::field_type = typename MultiTypeBlockVector<Args...>::field_type

◆ field_type [2/2]

template<typename... Args>
using Dune::MultiTypeBlockVector< Args >::field_type = Std::detected_t<std::common_type_t, typename FieldTraits< std::decay_t<Args> >::field_type...>

The type used for scalars.

Use the std::common_type_t of the Args' field_type and use nonesuch if no implementation of std::common_type is provided for the given field_type arguments.

◆ Matrix [1/7]

template<class T , class A , int n, int m, int transpose>
BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, transpose >::Matrix

◆ Matrix [2/7]

template<class T , class A , int n, int m>
BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, 0 >::Matrix

◆ Matrix [3/7]

template<class T , class A , int n, int m>
BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, 1 >::Matrix

◆ Matrix [4/7]

template<class T , class A , int n, int m>
BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulator< T, A, n, m, 2 >::Matrix

◆ Matrix [5/7]

template<class T , class A , int n, int m>
BCRSMatrix<FieldMatrix<T,n,m>,A> Dune::EntryAccumulatorFather< T, A, n, m >::Matrix

◆ Matrix [6/7]

template<int transpose, class T , class TA , int n, int m>
Dune::BCRSMatrix<FieldMatrix<T,n,m>,TA> Dune::MatrixInitializer< transpose, T, TA, n, m >::Matrix

◆ Matrix [7/7]

template<class T , class TA , int n, int m>
Dune::BCRSMatrix<Dune::FieldMatrix<T,n,m>,TA> Dune::MatrixInitializer< 1, T, TA, n, m >::Matrix

◆ real_type [1/2]

template<typename... Args>
using Dune::FieldTraits< MultiTypeBlockVector< Args... > >::real_type = typename MultiTypeBlockVector<Args...>::real_type

◆ real_type [2/2]

template<typename... Args>
using Dune::MultiTypeBlockVector< Args >::real_type = Std::detected_t<std::common_type_t, typename FieldTraits< std::decay_t<Args> >::real_type...>

The type used for real values.

Use the std::common_type_t of the Args' real_type and use nonesuch if no implementation of std::common_type is provided for the given real_type arguments.

◆ Row

template<class T , class A , int n, int m>
Matrix::RowIterator Dune::EntryAccumulatorFather< T, A, n, m >::Row

◆ size_type [1/8]

template<class T , class A , int n, int m, int transpose>
Matrix::size_type Dune::EntryAccumulator< T, A, n, m, transpose >::size_type

◆ size_type [2/8]

template<class T , class A , int n, int m>
Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 0 >::size_type

◆ size_type [3/8]

template<class T , class A , int n, int m>
Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 1 >::size_type

◆ size_type [4/8]

template<class T , class A , int n, int m>
Matrix::size_type Dune::EntryAccumulator< T, A, n, m, 2 >::size_type

◆ size_type [5/8]

template<int transpose, class T , class TA , int n, int m>
Matrix::size_type Dune::MatrixInitializer< transpose, T, TA, n, m >::size_type

◆ size_type [6/8]

template<class T , class TA , int n, int m>
Matrix::size_type Dune::MatrixInitializer< 1, T, TA, n, m >::size_type

◆ size_type [7/8]

template<typename... Args>
using Dune::MultiTypeBlockVector< Args >::size_type = std::size_t

Type used for vector sizes.

◆ size_type [8/8]

template<class T , class A , int n, int m>
BCRSMatrix<FieldMatrix<T,n,m>,A>::size_type Dune::SparsityPatternInitializer< T, A, n, m >::size_type

◆ type [1/6]

template<typename T , typename A , typename A1 , int n, int k, int m>
BCRSMatrix<typename MatMultMatResult<FieldMatrix<T,n,k>,FieldMatrix<T,k,m> >::type, std::allocator<typename MatMultMatResult<FieldMatrix<T,n,k>,FieldMatrix<T,k,m> >::type> > Dune::MatMultMatResult< BCRSMatrix< FieldMatrix< T, n, k >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >::type

◆ type [2/6]

template<typename T , int n, int k, int m>
FieldMatrix<T,n,m> Dune::MatMultMatResult< FieldMatrix< T, n, k >, FieldMatrix< T, k, m > >::type

◆ type [3/6]

template<typename... Args>
MultiTypeBlockVector<Args...> Dune::MultiTypeBlockVector< Args >::type

own class' type

◆ type [4/6]

template<typename T , typename A , typename A1 , int n, int k, int m>
BCRSMatrix<typename MatMultMatResult<FieldMatrix<T,n,k>,FieldMatrix<T,k,m> >::type, std::allocator<typename MatMultMatResult<FieldMatrix<T,n,k>,FieldMatrix<T,k,m> >::type> > Dune::TransposedMatMultMatResult< BCRSMatrix< FieldMatrix< T, k, n >, A >, BCRSMatrix< FieldMatrix< T, k, m >, A1 > >::type

◆ type [5/6]

template<typename T , int n, int k, int m>
FieldMatrix<T,n,m> Dune::TransposedMatMultMatResult< FieldMatrix< T, k, n >, FieldMatrix< T, k, m > >::type

◆ type [6/6]

template<size_t i, typename... Args>
using std::tuple_element< i, Dune::MultiTypeBlockVector< Args... > >::type = typename std::tuple_element<i, std::tuple<Args...> >::type

Enumeration Type Documentation

◆ anonymous enum

template<class T , class A , int n, int m>
anonymous enum
Enumerator
do_break 

◆ anonymous enum

template<int transpose, class T , class TA , int n, int m>
anonymous enum
Enumerator
do_break 

◆ anonymous enum

template<class T , class TA , int n, int m>
anonymous enum
Enumerator
do_break 

◆ anonymous enum

template<class T , class A , int n, int m>
anonymous enum
Enumerator
do_break 

Function Documentation

◆ axpy()

template<typename... Args>
template<typename Ta >
void Dune::MultiTypeBlockVector< Args >::axpy ( const Ta & a,
const type & y )
inline

Axpy operation on this vector (*this += a * y)

Template Parameters
TaType of the scalar 'a'

◆ countNonZeros() [1/2]

template<class M >
auto Dune::countNonZeros ( const M & ,
typename std::enable_if_t< Dune::IsNumber< M >::value > * sfinae = nullptr )
inline

Get the number of nonzero fields in the matrix.

This is not the number of nonzero blocks, but the number of non zero scalar entries (on blocklevel 1) if the matrix is viewed as a flat matrix.

For FieldMatrix this is simply the number of columns times the number of rows, for a BCRSMatrix<FieldMatrix<K,n,m>> this is the number of nonzero blocks time n*m.

◆ countNonZeros() [2/2]

template<class M >
auto Dune::countNonZeros ( const M & matrix,
typename std::enable_if_t<!Dune::IsNumber< M >::value > * sfinae = nullptr )
inline

◆ dim()

template<typename... Args>
size_type Dune::MultiTypeBlockVector< Args >::dim ( ) const
inline

Number of scalar elements.

◆ dot()

template<typename... Args>
field_type Dune::MultiTypeBlockVector< Args >::dot ( const type & newv) const
inline

◆ infinity_norm()

template<typename... Args>
real_type Dune::MultiTypeBlockVector< Args >::infinity_norm ( ) const
inline

Compute the maximum norm.

◆ infinity_norm_real()

template<typename... Args>
real_type Dune::MultiTypeBlockVector< Args >::infinity_norm_real ( ) const
inline

Compute the simplified maximum norm (uses 1-norm for complex values)

◆ matMultMat()

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultMat ( BCRSMatrix< FieldMatrix< T, n, m >, A > & res,
const BCRSMatrix< FieldMatrix< T, n, k >, A1 > & mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > & matt,
bool tryHard = false )

Calculate product of two sparse matrices ( $C=A*B$).

Parameters
resMatrix for the result of the computation.
matMatrix A.
mattMatrix B.
tryHardignored

◆ matMultTransposeMat()

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::matMultTransposeMat ( BCRSMatrix< FieldMatrix< T, n, k >, A > & res,
const BCRSMatrix< FieldMatrix< T, n, m >, A1 > & mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > & matt,
bool tryHard = false )

Calculate product of a sparse matrix with a transposed sparse matrices ( $C=A*B^T$).

Parameters
resMatrix for the result of the computation.
matMatrix A.
mattMatrix B, which will be transposed before the multiplication.
tryHardignored

◆ N()

template<typename... Args>
static constexpr size_type Dune::MultiTypeBlockVector< Args >::N ( )
inlinestaticconstexpr

Number of elements.

◆ one_norm()

template<typename... Args>
auto Dune::MultiTypeBlockVector< Args >::one_norm ( ) const
inline

Compute the 1-norm.

◆ one_norm_real()

template<typename... Args>
auto Dune::MultiTypeBlockVector< Args >::one_norm_real ( ) const
inline

Compute the simplified 1-norm (uses 1-norm also for complex values)

◆ operator*()

template<typename... Args>
field_type Dune::MultiTypeBlockVector< Args >::operator* ( const type & newv) const
inline

◆ operator*=()

template<typename... Args>
template<class T , std::enable_if_t< IsNumber< T >::value, int > = 0>
void Dune::MultiTypeBlockVector< Args >::operator*= ( const T & w)
inline

Multiplication with a scalar.

◆ operator+=()

template<typename... Args>
void Dune::MultiTypeBlockVector< Args >::operator+= ( const type & newv)
inline

operator for MultiTypeBlockVector += MultiTypeBlockVector operations

◆ operator-=()

template<typename... Args>
void Dune::MultiTypeBlockVector< Args >::operator-= ( const type & newv)
inline

operator for MultiTypeBlockVector -= MultiTypeBlockVector operations

◆ operator/=()

template<typename... Args>
template<class T , std::enable_if_t< IsNumber< T >::value, int > = 0>
void Dune::MultiTypeBlockVector< Args >::operator/= ( const T & w)
inline

Division by a scalar.

◆ operator<<()

template<typename... Args>
std::ostream & Dune::operator<< ( std::ostream & s,
const MultiTypeBlockVector< Args... > & v )

Send MultiTypeBlockVector to an outstream.

◆ operator=()

template<typename... Args>
template<typename T >
void Dune::MultiTypeBlockVector< Args >::operator= ( const T & newval)
inline

Assignment operator.

◆ operator[]() [1/2]

template<typename... Args>
template<size_type index>
std::tuple_element< index, TupleType >::type & Dune::MultiTypeBlockVector< Args >::operator[] ( const std::integral_constant< size_type, index > indexVariable)
inline

Random-access operator.

This method mimics the behavior of normal vector access with square brackets like, e.g., v[5] = 1. The problem is that the return type is different for each value of the argument in the brackets. Therefore we implement a trick using std::integral_constant. To access the first entry of a MultiTypeBlockVector named v write

std::integral_constant<std::size_t,0> _0;
v[_0] = ...
A Vector class to support different block types.
Definition multitypeblockvector.hh:59

The name '_0' used here as a static replacement of the integer number zero is arbitrary. Any other variable name can be used. If you don't like the separate variable, you can writee

v[std::integral_constant<std::size_t,0>()] = ...

◆ operator[]() [2/2]

template<typename... Args>
template<size_type index>
const std::tuple_element< index, TupleType >::type & Dune::MultiTypeBlockVector< Args >::operator[] ( const std::integral_constant< size_type, index > indexVariable) const
inline

Const random-access operator.

This is the const version of the random-access operator. See the non-const version for a full explanation of how to use it.

◆ size()

template<typename... Args>
static constexpr size_type Dune::MultiTypeBlockVector< Args >::size ( )
inlinestaticconstexpr

Return the number of non-zero vector entries.

As this is a dense vector data structure, all entries are non-zero, and hence 'size' returns the same number as 'N'.

◆ transposeMatMultMat()

template<class T , class A , class A1 , class A2 , int n, int m, int k>
void Dune::transposeMatMultMat ( BCRSMatrix< FieldMatrix< T, n, m >, A > & res,
const BCRSMatrix< FieldMatrix< T, k, n >, A1 > & mat,
const BCRSMatrix< FieldMatrix< T, k, m >, A2 > & matt,
bool tryHard = false )

Calculate product of a transposed sparse matrix with another sparse matrices ( $C=A^T*B$).

Parameters
resMatrix for the result of the computation.
matMatrix A, which will be transposed before the multiplication.
mattMatrix B.
tryHardignored

◆ two_norm()

template<typename... Args>
real_type Dune::MultiTypeBlockVector< Args >::two_norm ( ) const
inline

Compute the Euclidean norm.

◆ two_norm2()

template<typename... Args>
real_type Dune::MultiTypeBlockVector< Args >::two_norm2 ( ) const
inline

Compute the squared Euclidean norm.

Variable Documentation

◆ col [1/2]

Col col
protected

◆ col [2/2]

template<class T , class A , int n, int m>
Col Dune::EntryAccumulatorFather< T, A, n, m >::col
protected

◆ mat [1/2]

template<class T , class A , int n, int m>
Matrix& Dune::EntryAccumulatorFather< T, A, n, m >::mat
protected

◆ mat [2/2]

Matrix& mat
protected